
Seulbae Kim

CSED415: Computer Security
Spring 2024

Lec 07: Attacks and Defenses (1)

Administrivia

• Lab 02 is out!
• Due Mar 24
• Presents more challenging tasks than Lab 01
• Recommendations

• Start early
• Start early
• Start early
• Start early

CSED415 – Spring 2024 2

Administrivia

• Project teams are ready!
• Agustina & Megan
• whysw
• 구얏
• h@ckerz
• q1w2e3r4
• Poulpy

CSED415 – Spring 2024 3

Recap

• Shellcode, Morris Worm, BoF, Control Flow
• Return-to-stack-where-my-shellcode-is-injected: A 40-year-old exploit

CSED415 – Spring 2024 4

How can we mitigate such attack?

How can we circumvent the implemented mitigation?

How can we mitigate the advanced attack?

How can we circumvent the advanced mitigation?

Defense #1: NX

CSED415 – Spring 2024 5

Let’s think about the policy

• Return-to-stack attack
• Loads a shellcode on the stack
• Jumps to the shellcode and execute it

CSED415 – Spring 2024 6

But.. should the contents of the stack,
typically comprising data, be executable?

NX: No eXecute

• Hardware-based mitigation for arbitrary code execution
• CPU’s MMU (memory management unit) is in charge

• Separate between memory regions (pages) that contain
code to those containing data
• Only grant eXecute permission to the code pages
• Remove eXecute permission from the data pages

• Set NX flag for the stack pages (data region)
• Applied by default

CSED415 – Spring 2024 7

NX: No eXecute

• Hardware-based mitigation for arbitrary code execution
• CPU’s MMU (memory management unit) is in charge

• Separate between memory regions (pages) that contain
code to those containing data
• Only grant eXecute permission to the code pages
• Remove eXecute permission from the data pages

• Set NX flag for the stack pages (data region)
• Applied by default

CSED415 – Spring 2024 8

asdf

Generalized policy utilizing NX: W^X (Write xor eXecute)
à Every page in a process may be either writable or executable,
 but not both.

NX – low level implementation

CSED415 – Spring 2024 9

.text

.plt

heap

stack

.rodata

…

Virtual Addr Space Page Table
(simplified)

Physical Memory (RAM)

Page Frame Flags NX

1 0

2 0

3 0

4 1

…

9 1

…

16 1

page 4

page 2

page 1

page 3

NX flag set for pages mapped to stack

MMU (Memory
Mgmt Unit)

Address
translation

NX – low level implementation

CSED415 – Spring 2024 10

.text

.plt

heap

stack

.rodata

…

Virtual Addr Space Page Table
(simplified)

Page Frame Flags NX

1 0

2 0

3 0

4 1

…

9 1

…

16 1

MMU (Memory
Management Unit)

eip = 0xffbf8190

page: 16

NX bit set?

Page fault exception

fetch instruction

Execute
N

Y

What if hardware (MMU) doesn’t support NX?

• OS-level implementations exist
• Linux PaX (PageeXec)

• Emulates the NX bit on CPUs that do not support it
• x86 (i386) CPUs did not initially support NX

• The kernel checks if code can be executed from a page
• Technical details: https://pax.grsecurity.net/docs/pageexec.txt

CSED415 – Spring 2024 11

https://pax.grsecurity.net/docs/pageexec.txt

Defeating return-to-stack attacks

CSED415 – Spring 2024 12

• Stack

0xffffd378: push 0x68
0xffffd37a: push 0x732f2f2f
...

0xffffd378
Hijacked
control
flow

MMU Page fault

return addr. (libc)

saved ebp = 0xf7ffd020

buffer[512]

0xffffd378

0x2f68686a
0x68732f2f
0x6e69622f
0x0168e389

...
0xffffd3780xffffd57c

0xffffd578

0xffffd378
0xffffd374

execstack

• GCC compile option (passed directly to linker)
• $ gcc morris.c -z execstack -o morris
• Makes binary’s stack executable by clearning NX flag

• Tool to set, clear, or query NX stack flag of binaries
• $ execstack -q <filename> ; query NX flag
• $ execstack -c <filename> ; set NX flag
• $ execstack -s <filename> ; clear NX flag

CSED415 – Spring 2024 13

NX is used in Lab target binaries

• W^X policy is enforced
• All pages are never Writable and eXecutable at the same time

CSED415 – Spring 2024 14

Rethinking the W^X policy

• NX is very effective against code injection attacks
• Then, why is NX even an option?
• Do we ever need to store code on stack and execute them?

CSED415 – Spring 2024 15

Sometimes!

Just-in-time (JIT) compilation

• Workflow of interpreted languages (e.g., Java)

CSED415 – Spring 2024 16

java .class

source
code

bytecode

Java Virtual
Machine

(JVM)

interpreter

machine code
executed

compile execute

Runtime

processor

Machine code is generated
at runtime à SLOW

Just-in-time (JIT) compilation

• Optimizing for better performance

CSED415 – Spring 2024 17

java .class

source
code

bytecode

Java Virtual
Machine

(JVM)

interpreter

machine code
executed

compile execute

processor
Profiler

Checks for frequently
used code (e.g.,
repeated function calls)

Runtime

Just-in-time (JIT) compilation

• Optimizing for better performance

CSED415 – Spring 2024 18

java .class

source
code

bytecode

Java Virtual
Machine

(JVM)

machine code
executed

compile execute

processor
Profiler

Compiles them into
machine code (MC)
and store

JIT
compiler

Runtime

interpreter

Just-in-time (JIT) compilation

• Optimizing for better performance

CSED415 – Spring 2024 19

java .class

source
code

bytecode

Java Virtual
Machine

(JVM)

machine code
executed

compile execute

processor
Profiler

Next time the same
code is given, stored
MC is exectued

JIT
compiler

Runtime

interpreter

stored MC

Less # of runtime MC generation
à Better performance!

Just-in-time (JIT) compilation

• W^X policy cannot be enforced for JVM process

CSED415 – Spring 2024 20

java .class

source
code

bytecode

Java Virtual
Machine

(JVM)

machine code
executed

compile execute

processor
Profiler

JIT
compiler

Runtime

interpreter

stored MC

(process)

à writable memory area
needs to be executed

(Can’t use NX)

Next time the same
code is given, stored
MC is exectued

Attack #1-1: Return-to-libc

CSED415 – Spring 2024 21

Bypassing NX

• Return-to-stack exploit is mitigated
• Injected shellcode is not executable

• New attack idea: why don’t we return to an address of
existing code?
• Existing code segments are always executable

à Called “Code reuse attack”

CSED415 – Spring 2024 22

Libc (GNU C Library)

• A standard library that most C programs use
• printf(), atoi(), getenv(), …

• There are many useful functions in libc to return to
• Execution: exec family (execl, execve, …), system(), popen(), …
• File I/O: open(), read(), write(), fopen(), fread(), …
• MMIO: mmap()
• Memory protection: mprotect()
• String operation: strcpy(), memcpy(), memset(), …

CSED415 – Spring 2024 23

Return-to-libc attack

• Example: Typical invocation of system(“/bin/sh”);

CSED415 – Spring 2024 24

#include <stdlib.h>

int main(void) {
 system(“/bin/sh”);
 return 0;
}

(from Lec 06)

Background: Stack machine workflow

• Example: Typical invocation of system(“/bin/sh”);

CSED415 – Spring 2024 25

higher

lower

esp

eip

Next instruction:
Load the address of “/bin/sh” in edx

ebp

Background: Stack machine workflow

• Example: Typical invocation of system(“/bin/sh”);

CSED415 – Spring 2024 26

higher

lower

esp

eip

Next instruction:
Push the address of “/bin/sh”

ebp

Background: Stack machine workflow

• Example: Typical invocation of system(“/bin/sh”);

CSED415 – Spring 2024 27

higher

lower

esp
eip

Next instruction:
(not important)

addr_bin_sh

ebp

Background: Stack machine workflow

• Example: Typical invocation of system(“/bin/sh”);

CSED415 – Spring 2024 28

higher

lower

esp eip

Next instruction:
Call == Push return addr (next eip) and
jump to system
(ref: Lec 05)

addr_bin_sh

ebp

Background: Stack machine workflow

• Example: Typical invocation of system(“/bin/sh”);

CSED415 – Spring 2024 29

higher

lower

esp

eip

Next instruction:
function prologue (1): save ebp

addr_bin_sh

ret_addr

ebp

Background: Stack machine workflow

• Example: Typical invocation of system(“/bin/sh”);

CSED415 – Spring 2024 30

higher

lower

esp
eip

Next instruction:
function prologue (2): copy esp into ebp

addr_bin_sh

ret_addr

saved ebp

ebp

Background: Stack machine workflow

• Example: Typical invocation of system(“/bin/sh”);

CSED415 – Spring 2024 31

higher

lower

esp eip

Next instruction:
Reserve space for local variables

addr_bin_sh

ret_addr

saved ebpebp

Background: Stack machine workflow

• Example: Typical invocation of system(“/bin/sh”);

CSED415 – Spring 2024 32

higher

lower
esp

eip

Next instruction:
Args are accessed using ebp
(e.g., 1st arg is at ebp+8)

addr_bin_sh

ret_addr

saved ebpebp

local vars (16B)

Background: Stack machine workflow

• Example: Typical invocation of system(“/bin/sh”);

CSED415 – Spring 2024 33

higher

lower
esp

eip
addr_bin_sh

ret_addr

saved ebpebp

local vars (16B)

addr_bin_sh is saved in edx
for internal use

ebp + 8

Background: Stack machine workflow

• Example: Typical invocation of system(“/bin/sh”);

CSED415 – Spring 2024 34

higher

lower
esp

eip

addr_bin_sh

ret_addr

saved ebpebp

local vars (16B)

ebp + 8

Next instruction:
leave == mov esp,ebp;
 pop ebp;
(clean up stack and restore saved ebp)

Background: Stack machine workflow

• Example: Typical invocation of system(“/bin/sh”);

CSED415 – Spring 2024 35

higher

lower

esp

eip

addr_bin_sh

ret_addr

saved ebpebp

local vars (16B)

ebp + 8

leave == mov esp,ebp;
 pop ebp;
(clean up stack and restore saved ebp)

Background: Stack machine workflow

• Example: Typical invocation of system(“/bin/sh”);

CSED415 – Spring 2024 36

higher

lower

esp

eip

addr_bin_sh

ret_addr

saved ebp

ebp

local vars (16B)

ebp + 8

leave == mov esp,ebp;
 pop ebp;
(clean up stack and restore saved ebp)

Background: Stack machine workflow

• Example: Typical invocation of system(“/bin/sh”);

CSED415 – Spring 2024 37

higher

lower

esp

eip

addr_bin_sh

ret_addr

saved ebp

ebp

local vars (16B)

ebp + 8

Next instruction:
ret == pop eip
(return to saved address)

Background: Stack machine workflow

• Example: Typical invocation of system(“/bin/sh”);

CSED415 – Spring 2024 38

higher

lower

esp

eip

addr_bin_sh

ret_addr

saved ebp

ebp

local vars (16B)

ebp + 8

Next instruction:
ret == pop eip

asdf

The program doesn’t know (and doesn’t care about) the semantics
of execution. It just accesses args utilizing ebp and returns to the
saved address by utilizing esp.

Return-to-libc attack

• Stack layout of victim function

CSED415 – Spring 2024 39

higher

lower

ret_addr

saved ebp

victim function’s
calling contextbuf[8]

Return-to-libc attack

• Attack payload

CSED415 – Spring 2024 40

higher

lower

ret_addr

saved ebp

buf[8]

addr_system()

0xdeadbeef

addr_“/bin/sh”

overflow
until

ret_addr
+8

AAAA

AAAA

AAAA

Return-to-libc attack

• Exploit

CSED415 – Spring 2024 41

higher

lower

ret_addr

saved ebp

buf[8]

addr_system()

0xdeadbeef

addr_“/bin/sh”

AAAA

AAAA

AAAA

buf

ebp

ret esp

eip

Next instruction:
ret == pop eip
(return to saved address, which is
overwritten to system()’s address)

Return-to-libc attack

• Exploit

CSED415 – Spring 2024 42

higher

lower

ret_addr

saved ebp

buf[8]

addr_system()

0xdeadbeef

addr_“/bin/sh”

AAAA

AAAA

AAAA

esp

Next instruction:
function prologue (1): save ebp

eip

Return-to-libc attack

• Exploit

CSED415 – Spring 2024 43

higher

lower

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_“/bin/sh”

AAAA

AAAA

AAAA

esp

Next instruction:
function prologue (2): copy esp into ebp

eip

AAAA

Return-to-libc attack

• Exploit

CSED415 – Spring 2024 44

higher

lower

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_“/bin/sh”

AAAA

AAAA

AAAA

esp

Next instruction:
Reserve stack space

eip

AAAAebp

Return-to-libc attack

• Exploit

CSED415 – Spring 2024 45

higher

lower

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_“/bin/sh”

AAAA

AAAA

AAAA

esp

Next instruction:
Args are accessed using ebp
(e.g., 1st arg is at ebp+8)

eip
AAAAebp

Return-to-libc attack

• Exploit

CSED415 – Spring 2024 46

higher

lower

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_“/bin/sh”

AAAA

AAAA

AAAA

esp

eipAAAAebp

addr_bin_sh is saved in edx
for internal use

ebp + 8

Return-to-libc attack

• Exploit

CSED415 – Spring 2024 47

higher

lower

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_“/bin/sh”

AAAA

AAAA

AAAA

esp

eip
AAAAebp

ebp + 8
Next instruction:
leave == mov esp,ebp;
 pop ebp;
(clean up stack and restore saved ebp)

Return-to-libc attack

• Exploit

CSED415 – Spring 2024 48

higher

lower

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_“/bin/sh”

AAAA

AAAA

AAAA

esp
eip

AAAAebp

ebp + 8

leave == mov esp,ebp;
 pop ebp;
(clean up stack and restore saved ebp)

Return-to-libc attack

• Exploit

CSED415 – Spring 2024 49

higher

lower

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_“/bin/sh”

AAAA

AAAA

AAAA

esp
AAAA

ebp

leave == mov esp,ebp;
 pop ebp;
(clean up stack and restore saved ebp)

eip

Return-to-libc attack

• Exploit

CSED415 – Spring 2024 50

higher

lower

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_“/bin/sh”

AAAA

AAAA

AAAA

esp eip

AAAA

ebp

Next instruction:
return to 0xdeadbeef (and crash)

Return-to-libc attack

• Exploit

CSED415 – Spring 2024 51

higher

lower

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_“/bin/sh”

AAAA

AAAA

AAAA

esp eip

AAAA

ebp

Next instruction:
return to 0xdeadbeef and crash

1. We created a fake stack with fake ret addr and an argument
2. system(“/bin/sh”); is executed as if it is legitimately invoked
3. Program crashes at 0xdeadbeef (return addr of the fake stack)

Return-to-libc summary

• Returning to the exising code, we can bypass NX
• libc functions are good targets and they are executable

• Question: Can we chain multiple function calls?
• Instead of letting the program crash at 0xdeadbeef, can we have it

keep executing multiple libc functions?
• e.g., a sequence of functions to print “/proc/flag”

1. int fd = open(“/proc/flag”, O_RDONLY); // open a file (fd=3)
2. read(fd, gbuf_addr, 1040); // read into gbuf
3. write(1, gbuf_addr, 1040); // write gbuf to stdout (fd=1)

CSED415 – Spring 2024 52

Extensibility of return-to-libc

• Trying to chain three libc function calls

CSED415 – Spring 2024 53

higher

lower

ret_addr

saved ebp

buf[8]

addr_open()

???

addr_“/proc/flag”

AAAA

AAAA

AAAA

0 (O_RDONLY)

1. open(“/proc/flag”, O_RDONLY); is invoked
2. return to ???

[Goal]
1. int fd = open(“/proc/flag”, O_RDONLY);
2. read(fd, gbuf_addr, 1040);
3. write(stdout, gbuf_addr, 1040);

Extensibility of return-to-libc

• Trying to chain three libc function calls

CSED415 – Spring 2024 54

higher

lower

ret_addr

saved ebp

buf[8]

addr_open()

addr_read()

addr_“/proc/flag”

AAAA

AAAA

AAAA

0 (O_RDONLY)

1. open(“/proc/flag”, O_RDONLY); is invoked
2. return to read();

args??

[Goal]
1. int fd = open(“/proc/flag”, O_RDONLY);
2. read(fd, gbuf_addr, 1040);
3. write(stdout, gbuf_addr, 1040);

Extensibility of return-to-libc

• Trying to chain three libc function calls

CSED415 – Spring 2024 55

higher

lower

addr_read

ret_addr

saved ebp

buf[8]

addr_open()

addr_“/proc/flag”

AAAA

AAAA

AAAA

0 (O_RDONLY)

1. open(“/proc/flag”, O_RDONLY); is invoked
2. return to read();

1st arg of read

2nd arg of read

args??

1st arg already set to 0
(what we need: fd returned by open)

[Goal]
1. int fd = open(“/proc/flag”, O_RDONLY);
2. read(fd, gbuf_addr, 1040);
3. write(stdout, gbuf_addr, 1040);

addr_read()

3rd arg of read

Extensibility of return-to-libc

• Trying to chain three libc function calls

CSED415 – Spring 2024 56

higher

lower

addr_read

ret_addr

saved ebp

buf[8]

addr_open()

addr_“/proc/flag”

AAAA

AAAA

AAAA

0 (O_RDONLY)

1. open(“/proc/flag”, O_RDONLY); is invoked
2. return to read(0, gbuf_addr, 1040);

1st arg of read

2nd arg of read gbuf_addr

10403rd arg of read

Q) Can you identify two issues?

[Goal]
1. int fd = open(“/proc/flag”, O_RDONLY);
2. read(fd, gbuf_addr, 1040);
3. write(stdout, gbuf_addr, 1040);

addr_read()

Extensibility of return-to-libc

• Trying to chain three libc function calls

CSED415 – Spring 2024 57

higher

lower

addr_read

ret_addr

saved ebp

buf[8]

addr_open()

addr_“/proc/flag”

AAAA

AAAA

AAAA

0 (O_RDONLY)

1. open(“/proc/flag”, O_RDONLY); is invoked
2. return to read(0, gbuf_addr, 1040);

1st arg of read

2nd arg of read gbuf_addr

10403rd arg of read

Issue #1:
Reads 1040 bytes from fd = 0 (stdin) into a buffer
à Not what we wanted :(

[Goal]
1. int fd = open(“/proc/flag”, O_RDONLY);
2. read(fd, gbuf_addr, 1040);
3. write(stdout, gbuf_addr, 1040);

addr_read()

Extensibility of return-to-libc

• Trying to chain three libc function calls

CSED415 – Spring 2024 58

higher

lower

addr_read

ret_addr

saved ebp

buf[8]

addr_open()

addr_read()

addr_“/proc/flag”

AAAA

AAAA

AAAA

0 (O_RDONLY)

1. open(“/proc/flag”, O_RDONLY); is invoked
2. return to read(0, gbuf_addr, 1040);

1st arg of read

2nd arg of read gbuf_addr

10403rd arg of read

Issue #1:
Reads 1040 bytes from fd = 0 (stdin) into a buffer
à Not what we wanted :(

[Goal]
1. int fd = open(“/proc/flag”, O_RDONLY);
2. read(fd, gbuf_addr, 1040);
3. write(stdout, gbuf_addr, 1040);

Issue #2: read() returns to addr_”/proc/flag”
à Call chain breaks here :(

Problems of naïve chaining

• To chain multiple functions, the payload must include:

CSED415 – Spring 2024 59

ret: 1st func addr

ret addr after 1st func

1st func arg 1

1st func arg 2

1st func arg 3

Problems of naïve chaining

• To chain multiple functions, the payload must include:

CSED415 – Spring 2024 60

ret: 1st func addr

ret addr after 1st func

1st func arg 1

1st func arg 2

1st func arg 3

2nd func addr

ret addr after 2nd func

2nd func arg 1

2nd func arg 2

2nd func arg 3

conflict

conflict

conflict

Solution

• Returning to code that changes esp and ends with ret
• e.g., Target binary of Lab 02 contains a “pop; pop; ret;” gadget

CSED415 – Spring 2024 61

Result: esp+=8 and then return to the addr esp points to

Attack #1-2: ROP

CSED415 – Spring 2024 62

Return-Oriented Programming (ROP)

• Generalized version of code reuse attack
• Hobav Shacham, “The Geometry of Innocent Flesh on the Bone:
Return-to-libc without Function Calls (on the x86)”, ACM CCS 2007
• https://hovav.net/ucsd/dist/geometry.pdf

CSED415 – Spring 2024 63

https://hovav.net/ucsd/dist/geometry.pdf

Chaining functions through ROP gadgets

• Naïve chain

CSED415 – Spring 2024 64

higher

lower

ret_addr

saved ebp

buf[8]

addr_open()

addr_read()

addr_“/proc/flag”

addr_read

AAAA

AAAA

AAAA

0 (O_RDONLY)1st arg of read

2nd arg of read gbuf_addr

10403rd arg of read

Chaining functions through ROP gadgets

• Naïve chain

CSED415 – Spring 2024 65

higher

lower

ret_addr

saved ebp

buf[8]

addr_open()

addr_read()

addr_“/proc/flag”

addr_read

AAAA

AAAA

AAAA

0 (O_RDONLY)1st arg of read

2nd arg of read gbuf_addr

10403rd arg of read

• ROP chain
lower

ret_addr

saved ebp

buf[8]

addr_open()

rop gadget

addr_“/proc/flag”

addr_pop2ret

AAAA

AAAA

AAAA

0 (O_RDONLY)

addr_read addr_read()

fd (3)1st arg of read

???

2nd arg of read gbuf_addr

3rd arg of read 1040

Chaining functions through ROP gadgets

CSED415 – Spring 2024 66

• ROP chain
lower

ret_addr

saved ebp

buf[8]

addr_open()

rop gadget

addr_“/proc/flag”

addr_pop2ret

AAAA

AAAA

AAAA

0 (O_RDONLY)

addr_read addr_read()

fd (3)1st arg of read

???

2nd arg of read gbuf_addr

esp

eip (== pop eip)

3rd arg of read 1040

Chaining functions through ROP gadgets

CSED415 – Spring 2024 67

• ROP chain
lower

ret_addr

saved ebp

buf[8]

addr_open()

rop gadget

addr_“/proc/flag”

addr_pop2ret

AAAA

AAAA

AAAA

0 (O_RDONLY)

addr_read addr_read()

fd (3)1st arg of read

???

2nd arg of read gbuf_addr

esp
eip

(fast forwarded to open’s ret)

(== pop eip)

3rd arg of read 1040

Chaining functions through ROP gadgets

CSED415 – Spring 2024 68

• ROP chain
lower

ret_addr

saved ebp

buf[8]

addr_open()

rop gadget

addr_“/proc/flag”

addr_pop2ret

AAAA

AAAA

AAAA

0 (O_RDONLY)

addr_read addr_read()

fd (3)1st arg of read

???

2nd arg of read gbuf_addr

esp

eip (esp += 4)

3rd arg of read 1040

Chaining functions through ROP gadgets

CSED415 – Spring 2024 69

• ROP chain
lower

ret_addr

saved ebp

buf[8]

addr_open()

rop gadget

addr_“/proc/flag”

addr_pop2ret

AAAA

AAAA

AAAA

0 (O_RDONLY)

addr_read addr_read()

fd (3)1st arg of read

???

2nd arg of read gbuf_addr

esp

eip
(esp += 4)
(esp += 4)

3rd arg of read 1040

Chaining functions through ROP gadgets

CSED415 – Spring 2024 70

• ROP chain
lower

ret_addr

saved ebp

buf[8]

addr_open()

rop gadget

addr_“/proc/flag”

addr_pop2ret

AAAA

AAAA

AAAA

0 (O_RDONLY)

addr_read addr_read()

fd (3)1st arg of read

???

2nd arg of read gbuf_addr

esp

eip

Adjusted esp points to
the addr of the 2nd function!

3rd arg of read 1040

Chaining functions through ROP gadgets

CSED415 – Spring 2024 71

• ROP chain
lower

ret_addr

saved ebp

buf[8]

addr_open()

rop gadget

addr_“/proc/flag”

addr_pop2ret

AAAA

AAAA

AAAA

0 (O_RDONLY)

addr_read addr_read()

fd (3)1st arg of read

rop_gadget

2nd arg of read gbuf_addr

esp

3rd arg of read 1040

addr_pop3ret
We can further chain more functions

by returning to pop; pop; pop; ret;
(Three pops move esp down by 12 bytes)

Questions

• Where are ROP gadgets?
• pop; ret;
• pop; pop; ret;
• pop; pop; pop; ret;
• …

• How do we find them?

CSED415 – Spring 2024 72

Next week’s topic!

Coming up next

• Attack, defense, attack, defense, … (continued)

CSED415 – Spring 2024 73

Questions?

CSED415 – Spring 2024 74

