
Seulbae Kim

CSED415: Computer Security
Spring 2024

Lec 11: Hash and MAC

Administrivia

• Lab 03 is out!
• Due Sunday, April 7
• Breaking a faulty cryptographic scheme and a game

CSED415 – Spring 2024 2

Lab 03 overview

CSED415 – Spring 2024 3

uRC4 (a variant of RC4)

Secret key (64 bytes)

Ciphertext ① Given

② Find the secret key

③ Play game

④ Achieve over
3,932,156 points

to get a flag

Phase 1: uRC4 service (server.py) Phase 2: target

Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication
Code (MAC) • Digital signature

CSED415 – Spring 2024 4

✅
✅
✅

Tools
• Secure key exchange
• Hash
✅

✅
✅

Hash Functions

CSED415 – Spring 2024 5

Missing integrity

• Enc/decryption does not provide integrity (Lec 9 and 10)

• How can we allow Alice and bob verify that their messages
have not been tampered with?
• i.e., how to verify 𝑐% == 𝑐&?

CSED415 – Spring 2024 6

“Love you Bob” “Hate you Bob”

??
𝑐% 𝑐&

Hash functions

• Hash function 𝐻
• Takes a message 𝑚 of arbitrary length
• Creates a message digest ℎ of fixed length

• ℎ is also called hash, hash value, hash digest, …

• Required properties
• Correctness: Deterministic outcomes

• Hashing 𝑚 should always produce the same ℎ
• Efficiency: Efficient to compute 𝐻(𝑚)

CSED415 – Spring 2024 7

𝐻(𝑚)

𝑚

ℎ=F89CBD46

Arbitrary length input to fixed length output

• MD5: 128-bit hash function (produces 16-byte hash digests)
• “a” à 0cc175b9c0f1b6a831c399e269772661
• “aa” à 4124bc0a9335c27f086f24ba207a4912
• “a”*2048 à b7ea2d21ad2ef3e28085d30247603e0b

CSED415 – Spring 2024 8

arbitrary length
input

fixed length
output

Merkle-Damgård Transform (1979)

• Used by many hash functions, including MD, SHA-1 and SHA-2
families
• Build hash function 𝐻 by chaining a compression function 𝐶

CSED415 – Spring 2024 9

𝐶 𝐶 𝐶

𝑚[1]

0!

𝑚[2] 𝑚[𝑛]

𝐶…
𝐻(𝑚)

𝑚[𝑛 − 1]

𝐶 always outputs a fixed length output

• Scenario: File integrity verification
• Alice and Bob both downloaded a 40-GB movie file from the internet
• They want to verify if the two files are identical
• Naïve way:

Typical usage of hash function

CSED415 – Spring 2024 10

Alice sends the file to Bob
Bob compares the received file with his file

à Waste of bandwidth and
computational powers

dune2_4k.mp4 (40 GB) dune2_4k.mp4 (40 GB)

• Scenario: File integrity verification
• Alice and Bob both downloaded a 40-GB movie file from the internet
• They want to verify if the two files are identical
• Using hash:

Typical usage of hash function

CSED415 – Spring 2024 11

dune2_4k.mp4 (40 GB) dune2_4k.mp4 (40 GB)

Alice sends 𝐻 𝑚𝑜𝑣𝑖𝑒 (16 bytes)
Bob compares the hash digests

128-bit hash digest 128-bit hash digest

Cryptographic hash functions

• Hash with additional requirements for security
• One-wayness (OW)

• For any given hash value ℎ,
it is computationally infeasible to find 𝑚 such that 𝐻 𝑚 = ℎ

• Collision resistance (CR)
• It is computationally infeasible to find a pair of plaintexts 𝑚" and 𝑚#

such that 𝐻 𝑚" = 𝐻(𝑚#)

CSED415 – Spring 2024 12

One-wayness (OW)

• Informally:
• Given an output ℎ, it is infeasible to find input 𝑚 such that 𝐻(𝑚) = ℎ

• Formally:
• 𝐻 is one-way, if for all polynomial time adversary 𝐴

who randomly selects 𝑚′ from the plaintext domain,

• Common misconception (beware):
• “A hash function is one-way because the mapping is many-to-one”
à Wrong! Totally different concept from OW

CSED415 – Spring 2024 13

𝐴𝑑𝑣'() 𝐴 = 𝑃𝑟𝑜𝑏[𝐻 𝑚′ = ℎ] is negligible
“Advantage”

OW examples

• Is 𝐻 𝑚 = 0 a one-way hash function?

• Is the following summation checksum one-way?

CSED415 – Spring 2024 14

OW: Is 𝐴𝑑𝑣'() 𝐴 = 𝑃𝑟𝑜𝑏[𝐻 𝑚′ = ℎ] negligible?

C S E D
4 1 5 0

Message Ascii-hex format

43 53 45 44
34 31 35 30

Checksum: 77 84 7A 74

No. 𝐴 can easily find multiple 𝑚′s. 𝑃𝑟𝑜𝑏 𝐻 𝑚* = 0 = 1

No. 𝐴 can easily find “CSED4150” (and other 𝑚′s) given 77847A74

OW examples

• If 𝐻 and 𝐺 are length-preserving hash functions that are OW,
is 𝐹 𝑥 = 𝐻 𝑥 ⊕ 𝐺(𝑥) one-way?

CSED415 – Spring 2024 15

OW: Is 𝐴𝑑𝑣'() 𝐴 = 𝑃𝑟𝑜𝑏[𝐻 𝑚′ = ℎ] negligible?

Collision resistance (CR)

• Collision: Two different inputs results in the same output
• 𝑚% ≠ 𝑚& and 𝐻 𝑚% = 𝐻(𝑚&)

• Can a hash function have no collision?
• No. If the input domain is larger than 2+ for a 𝑛-bit hash function,

there must be collisions (by the pigeonhole principle)
• Collision resistance is not about having no collisions.

It makes finding collisions infeasible for adversaries

CSED415 – Spring 2024 16

Collision resistance (CR)

• Informally:
• It is computationally infeasible to find a pair of plaintexts 𝑚% and 𝑚&

such that 𝐻 𝑚% = 𝐻(𝑚&)

• Formally:
• 𝐻 is collision-resistant, if for all polynomial time adversary 𝐴,

CSED415 – Spring 2024 17

𝐴𝑑𝑣',- 𝐴 = 𝑃𝑟𝑜𝑏[𝐻 𝑚% = 𝐻(𝑚&)] is negligible where 𝑚% ≠ 𝑚&
“Advantage”

CR example

• Let 𝐻: 0, 1 !"# → 0, 1 $!% be defined by

• Q) Is 𝐻 collision-resistant?

CSED415 – Spring 2024 18

CR: is 𝐴𝑑𝑣',- 𝐴 = 𝑃𝑟𝑜𝑏[𝐻 𝑚% = 𝐻(𝑚&)] negligible where 𝑚% ≠ 𝑚&?

𝐻 𝑥 = 𝐻 𝑥.||𝑥/ = 𝐴𝐸𝑆 𝑥. ⊕𝐴𝐸𝑆(𝑥/)
(|| means concatenation)

A generic attack for finding collisions

• Birthday problem
• Choose a group of N random people
• What’s the probability that at least one pair of individuals have

the same birthday?

• Birthday pardox:
• If N=23, the odds that two people share the same birthday is 50%

• Event 𝐸: Birthdays of 23 people are different à 365𝑃23
• Possible outcomes: Each people have 365 choices à 365#%

• 𝑃 𝐸 = !"#&$!
%'(!" ≈ 0.492

• Therefore, prob. that at least two people share the b-day: 1 − 𝑃 𝐸 ≈ 50%
CSED415 – Spring 2024 19

A generic attack for finding collisions

• Birthday attack
• Similarly, the probability of detecting a hash collision is much higher

than the expectation (e.g., brute-forcing)
• Approximation

• When there are 2! possible data,
if we have 2! data, the probability of collision is > 50%
• In other words, finding a collision of a 𝑛-bit hash function requires 2! trials
• 365 days à 𝑛 = 9 bits à 2) = 22.67à approximately 23 trials for 50%

chance

CSED415 – Spring 2024 20

A generic attack for finding collisions

• Collision-resistance of a 𝑛-bit hash function is bounded by 2&

• Cryptanalysis of hash functions

CSED415 – Spring 2024 21

Function n Trials needed by
birthday attack Existing attacks

MD4 128 2!" < sec
MD5 128 2!" 1 min
SHA-1 160 2#$ 2!% trials (2005)
SHA-1 160 2#$ 2!&.(trials (2017)

SHA-256 256 2()# -

Attacks requiring less trials than B-day attack are considered feasible attacks

MD5: An old standard without CR

• Developed by Ron Rivest in 1991
• Generates 128-bit hash digests
• Various severe weaknesses have been discovered
• Chosen-prefix collisions attacks (Marc Stevens, et al.)
• Start with two arbitrary plaintexts 𝑚% and 𝑚&

• One can compute suffixes 𝑠% and 𝑠& such that
𝑚𝑑5(𝑚%| 𝑠% = 𝑚𝑑5(𝑚&| 𝑠& in 250 trials

• Using this approach, a pair of different files (e.g., jpeg) with the same
MD5 hash value can be computed

CSED415 – Spring 2024 22

Collision in practice – MD5 is completely broken

• Download ship.jpg and plane.jpg from
https://natmchugh.blogspot.com/2015/02/create-your-own-
md5-collisions.html

CSED415 – Spring 2024 23

import hashlib

f1 = open("ship.jpg", "rb").read()
f2 = open("plane.jpg", "rb").read()

print(hashlib.md5(f1).hexdigest())
print(hashlib.md5(f2).hexdigest())

Both files are hashed to 253dd04e87492e4fc3471de5e776bc3d

https://natmchugh.blogspot.com/2015/02/create-your-own-md5-collisions.html
https://natmchugh.blogspot.com/2015/02/create-your-own-md5-collisions.html

CR vs OW

• Does collision-resistance imply one-wayness?

CSED415 – Spring 2024 24

• Does one-wayness imply collision-resistance?

CR vs OW

• Does collision-resistance imply one-wayness?
• It does not

CSED415 – Spring 2024 25

e.g., 𝐻 𝑥 = 𝑥 is CR, but not OW

• Does one-wayness imply collision-resistance?
• It does not

e.g., 𝐻 𝑥 is a good hash, which is OW.
 Notation: 𝑥 = 𝑥*𝑥"𝑥#…𝑥! (𝑥+: 𝑖-th bit of 𝑥)
 𝐺 𝑥 = 𝐻(𝑥*𝑥"…𝑥!,") (ignores the last bit)
à𝐺(𝑥) is still OW. Hard to find 𝑥 from 𝐺(𝑥)
à𝐺(𝑥) is not CR. 𝐻 𝑥*𝑥"…𝑥!,"0 = 𝐻(𝑥*𝑥"…𝑥!,"1)

Using hash functions for integrity

• Scenario
• Microsoft publishes a new version of vscode
• Alice downloads the installer
• How does she verify that nobody tampered with the installer?

CSED415 – Spring 2024 26

Using hash functions for integrity

CSED415 – Spring 2024 27

• e.g., vscode download site

Using hash functions for integrity

CSED415 – Spring 2024 28

• e.g., vscode download site
SHA-256 hashes

Using hash functions for integrity

• Method
• Microsoft hashes the installer binary with SHA-256 and publishes

the hash on its website
• Alice hashes the installer binary she downloaded with SHA-256 and

checks if the hash matches the hash on the website

• Security
• If Alice downloaded a malicious program, the hash would not match
• An attacker cannot create a malicious program with the same hash as

the original installer (SHA-256 is collision-resistant)

CSED415 – Spring 2024 29

Using hash functions for integrity

• Another scenario
• Alice and Bob want to communicate over an insecure channel and

verify integrity of their messages
• Mallory can tamper with the messages

CSED415 – Spring 2024 30

Using hash functions for integrity

• Method
• Alice sends her message with its hash digest over the channel
• Bob receives the message and computes a hash of the message
• Bob verifies that the hash he computed matches the hash sent by

Alice

CSED415 – Spring 2024 31

𝑚 = “Love you, Bob”
𝐻(𝑚) = 9dd06d0ad4af07a431c9a20f1510d4cf

𝑚 || 𝐻(𝑚) 𝑚 || 𝐻(𝑚)

𝐻(𝑚) matches.
Not tampered!

Using hash functions for integrity

• Method
• Alice sends her message with its hash digest over the channel
• Bob receives the message and computes a hash of the message
• Bob verifies that the hash he computed matches the hash sent by

Alice

CSED415 – Spring 2024 32

𝑚 = “Love you, Bob”
𝐻(𝑚) = 9dd06d0ad4af07a431c9a20f1510d4cf

𝑚 || 𝐻(𝑚) 𝑚′ || 𝐻(𝑚′)

Problem: Mallory can modify BOTH
𝑚′ = “Hate you, Bob”
𝐻(𝑚′) = 8fdc1ad05c30b8311f687b04c61e81ef

𝐻(𝑚′) matches.
Not tampered!

Do hash functions provide integrity?

• Depends on the threat model
• MS website à hash cannot be modified by Mallory
• Communication à Mallory can modify hash

• Main issue: Hash functions are unkeyed functions
• No secret key is used as input for hash functions, so any attacker can

compute the hash of any value

CSED415 – Spring 2024 33

How do we utilize hash to design schemes that provide integrity?

Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication
Code (MAC) • Digital signature

CSED415 – Spring 2024 34

✅
✅
✅

Tools
• Secure key exchange
• Hash
✅

✅
✅

✅

Message Authentication Code
(MAC)

CSED415 – Spring 2024 35

Goal: Providing integrity

• Reminder: We are in the symmetric-key setting
• Alice and Bob share a secret key
• Attacker does not know the key

• Idea: Attach some piece of information to verify that
someone with the key is the sender of a message

CSED415 – Spring 2024 36

Message Authentication Code (MAC)

• Designed to provide both integrity and authenticity
• Setting
• Alice sends message 𝑚 and tag 𝑡 = 𝑀𝐴𝐶 𝑘,𝑚 where 𝑘: secret key
• Bob recomputes 𝑀𝐴𝐶(𝑘,𝑚) and verifies if the result matches 𝑡
• If the MACs match, Bob is confident that 𝑚 has not been tampered

with

CSED415 – Spring 2024 37

𝑚

MAC𝑘 𝑡 MAC 𝑘

𝑚 𝑡 𝑚 𝑡 𝑡
Verify

Hash function vs MAC

• Hash: Keyless

• MAC: Keyed

CSED415 – Spring 2024 38

𝐻(𝑚)𝑚 ℎ

𝑀𝐴𝐶(𝑘,𝑚)𝑚 𝑡

𝑘

Evaluating the security of MAC

• “Unforgeability”: MAC is unforgeable under chosen msg if
• A polynomial time adversary can see some number of (𝑚, 𝑡) pairs
• Without knowing the key 𝑘,

it is infeasible to find a message 𝑚 and its MAC tag 𝑡
such that 𝑡 = 𝑀𝐴𝐶 𝑘,𝑚

CSED415 – Spring 2024 39

Evaluating the security of MAC

• Example: Block-cipher-based MAC
• 𝐸 is a 𝑛-bit block cipher using key 𝑘

CSED415 – Spring 2024 40

𝐸 𝐸 𝐸

𝑚!𝑚"…𝑚# 𝑚#$"…𝑚%#

⊕

𝑡

𝑘 𝑘 𝑘
Is this MAC unforgeable?

1. Adversary selects plaintext 0*||1* and
obtains 𝑡 = 𝑀𝐴𝐶(𝑘, 0*||1*)

2. Adversary found 𝑚 = 1*||0* and its tag 𝑡
such that 𝑡 = 𝑀𝐴𝐶(𝑘, 1*||0*)

à Not unforgeable (i.e., no integrity)
MAC

(0000…01111….1)

Constructing MAC using hash functions

• Secret prefix construction: 𝐻(𝑘||𝑚)
• Secret suffix construction: 𝐻(𝑚||𝑘)
• Nested MAC (NMAC): 𝐻 𝑘$ || 𝐻 𝑘!||𝑚
• Hash-based MAC (HMAC): 𝐻 𝑘'⊕𝑜𝑝𝑎𝑑 || 𝐻 𝑘'⊕ 𝑖𝑝𝑎𝑑 || 𝑚

CSED415 – Spring 2024 41

(|| means concatenation)

Constructing MAC using hash functions

• Secret prefix construction: 𝐻(𝑘||𝑚)
• Recall: Merkel-Damgård transform

CSED415 – Spring 2024 42

𝐶 𝐶 𝐶

𝑘||𝑚[1]

0!

𝑘||𝑚[2] 𝑘||𝑚[𝑛]

𝐶…
𝐻(𝑘||𝑚)

𝑘||𝑚[𝑛 − 1]

[Length extension attack]
Given: 𝑚 and 𝐻(𝑘||𝑚).
Attacker can append 𝑎 to 𝑚 to get 𝑚7 = 𝑚||𝑎
Attacker can use 𝐻(𝑘||𝑚) to initialize the computation of 𝐻(𝑘||𝑚7) = 𝐻(𝑘||𝑚||𝑎)

𝐶

𝑎

𝐻(𝑘||𝑚′)

Constructing MAC using hash functions

• Secret suffix construction: 𝐻(𝑚||𝑘)
• No known attack for secret suffix construction
• However, its unforgeability is not proven

CSED415 – Spring 2024 43

Constructing MAC using hash functions

• Nested MAC: 𝐻 𝑘$ || 𝐻 𝑘!||𝑚
• Nesting two hashes prevents a length extension attack
• If two keys (𝑘% and 𝑘&) are different, NMAC is provably secure

(unforgeable)
• Issues with NMAC

• Need two different keys (weaker security)
• Two keys need to be the same length as hash digest (constraint)

CSED415 – Spring 2024 44

Constructing MAC using hash functions

• Hash-based MAC (HMAC): 𝐻 𝑘'⊕𝑜𝑝𝑎𝑑 || 𝐻 𝑘'⊕ 𝑖𝑝𝑎𝑑 || 𝑚
• Improvement over NMAC
• 𝑘′: 𝑛-bit version of 𝑘 where 𝑛 is the length of hash digest

• If 𝑘 is smaller than 𝑛 bits, 𝑘7 = 𝑘||0!, 8 , i.e., pad 𝑘 with 0’s to make it 𝑛 bits
• Otherwise, 𝑘7 = 𝐻(𝑘), i.e., hash 𝑘 to make it 𝑛 bits

• Two different keys can be derived from 𝑘′
• Outer pad (𝑜𝑝𝑎𝑑): 0x5c repeated until the length becomes 𝑛 bits
• Inner pad (𝑖𝑝𝑎𝑑): 0x36 repeated until the length becomes 𝑛 bits

• Two rounds of hashing with two keys

CSED415 – Spring 2024 45

Evaluating the security of HMAC

• Hash-based MAC (HMAC):
• 𝐻 𝑘*⊕𝑜𝑝𝑎𝑑 || 𝐻 𝑘*⊕ 𝑖𝑝𝑎𝑑 || 𝑚
• HMAC is unforgeable under chosen message attack

• A polynomial attacker cannot create 𝑚 and valid 𝑡 = 𝐻𝑀𝐴𝐶(𝑘,𝑚) without
knowing the secret key 𝑘 (proof omitted)

• HMAC is one of the most widely standardized and used
cryptographic constructs

CSED415 – Spring 2024 46

Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication
Code (MAC) • Digital signature

CSED415 – Spring 2024 47

✅
✅
✅

Tools
• Secure key exchange
• Hash
✅

✅
✅

✅

✅

Can we achieve both?

Authenticated Encryption

CSED415 – Spring 2024 48

Confidentiality and integrity/authenticity goals

• Encryption schemes provide confidentiality, but not integrity
• MACs provide integrity/authenticity, but not confidentiality
à Can we achieve both?

CSED415 – Spring 2024 49

Authenticated encryption (AE)

• Definition
• A scheme that simultaneously guarantees confidentiality and integrity

of a message

• Existing building blocks for AE:
• 𝐸 𝑘%, 𝑚 and 𝐷 𝑘%, 𝑚

• e.g., AES
• 𝑀𝐴𝐶(𝑘&, 𝑚)

• e.g., HMAC

CSED415 – Spring 2024 50

Building AE from existing primitives

1. Encrypt-and-MAC

CSED415 – Spring 2024 51

𝑚, 𝑘 = 𝑘"	||	𝑘%

𝑐' ← 𝐸 𝑘", 𝑚 	|| 𝑡 ← 𝑀𝐴𝐶 𝑘%, 𝑚

Algorithm 𝐴𝐸+(𝑚):
 𝑐, ← 𝐸(𝑘(, 𝑚)
 𝑡 ← 𝑀𝐴𝐶 𝑘), 𝑚
 𝑐 ← 𝑐,||𝑡
 Return 𝑐

Algorithm 𝐴𝐷+(𝑐):
 𝑚 ← 𝐷(𝑘(, 𝑐)
 If 𝑡 = 𝑀𝐴𝐶 𝑘), 𝑚 Return 𝑚
 Else Return 𝑁𝑈𝐿𝐿

Secure?

No. Vulnerable to chosen-plaintext attacks L

𝑘 = 𝑘"	||	𝑘%

𝑡 is exposed as is. Attacker can observe 𝑡
to check the equality of messages

Building AE from existing primitives

2. MAC-then-Encrypt

CSED415 – Spring 2024 52

𝑐 ← 𝐸 𝑘", 𝑚||𝑀𝐴𝐶 𝑘%, 𝑚

Algorithm 𝐴𝐸+ 𝑚 :
 𝑡 ← 𝑀𝐴𝐶 𝑘), 𝑚
 𝑐 ← 𝐸(𝑘(, 𝑚||𝑡)
 Return 𝑐

Algorithm 𝐴𝐷+ 𝑐 :
 𝑚||𝑡 ← 𝐷 𝑘(, 𝑐
 If 𝑡 = 𝑀𝐴𝐶 𝑘), 𝑚 Return 𝑚
 Else Return 𝑁𝑈𝐿𝐿

No longer vulnerable to chosen-plaintext attacks J
Integrity (unforgeability) is not guaranteed for some
encryption schemes even if a good MAC is used L

𝑚, 𝑘 = 𝑘"	||	𝑘% 𝑘 = 𝑘"	||	𝑘%

Secure?

à Attackers can forge messages that are accepted by 𝐴𝐷8:
 e.g., 𝐸7 𝑘,𝑚 = 𝐸 𝑘,𝑚 	||	0 = 𝑐′
 𝐷7 𝑘, 𝑐7 = 𝐷7 𝑘, 𝑐	||	0 = 𝐷 𝑘, 𝑐

Building AE from existing primitives

3. Encrypt-then-MAC

CSED415 – Spring 2024 53

𝑐' ← 𝐸 𝑘", 𝑚 || 𝑡 ← 𝑀𝐴𝐶 𝑘%, 𝑐'

Algorithm 𝐴𝐸+ 𝑚 :
 𝑐′ ← 𝐸 𝑘(, 𝑚
 𝑡 ← 𝑀𝐴𝐶(𝑘), 𝑐′)
 𝑐 ← 𝑐,	||	𝑡
 Return 𝑐

Algorithm 𝐴𝐷+ 𝑐 :
 𝑐,||	𝑡 ← 𝑐
 𝑚 ← 𝐷(𝑘), 𝑐,)
 If 𝑡 = 𝑀𝐴𝐶 𝑘), 𝑐′ Return 𝑚
 Else Return 𝑁𝑈𝐿𝐿

Not vulnerable to chosen-plaintext attacks J
Unforgeability is algo guaranteed J

(proof omitted)

𝑚, 𝑘 = 𝑘"	||	𝑘% 𝑘 = 𝑘"	||	𝑘%

Secure?

Can check MAC first before decrypting (efficiency!)

Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication
Code (MAC) • Digital signature

CIA at the same time • Authenticated encryption

CSED415 – Spring 2024 54

✅
✅
✅

Tools
• Secure key exchange
• Hash
✅

✅
✅

✅

✅

✅

Questions?

CSED415 – Spring 2024 55

