
Seulbae Kim

CSED415: Computer Security
Spring 2024

Lec 12: Digital Signatures
and Certificates

Administrivia

• Lab 03 is out!
• Due Sunday, April 7
• Breaking a faulty cryptographic scheme and a game

CSED415 – Spring 2024 2

Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication
Code (MAC) • Digital signature

CIA at the same time • Authenticated encryption

CSED415 – Spring 2024 3

✅
✅
✅

Tools
• Secure key exchange
• Hash
✅

✅
✅

✅

✅

✅

Digital Signatures

CSED415 – Spring 2024 4

Missing integrity and authenticity

• Asymmetric enc/decryption, like the symmetric schemes,
only provide confidentiality, but not integrity
• MAC solves integrity problem for symmetric-key settings

à Can we use asymmetric encryption to provide integrity and
authenticity of messages?

CSED415 – Spring 2024 5

Authenticity in real life

• Anonymous document

CSED415 – Spring 2024 6

Party tonight at
my place.
Come for
unlimited

Authenticity in real life

• Anonymous document

CSED415 – Spring 2024 7

Party tonight at
my place.
Come for
unlimited

??

Authenticity in real life

• Signed (stamped) document

CSED415 – Spring 2024 8

Party tonight at
my place.
Come for
unlimited

!!

Digital signatures

• Key idea:
• Asymmetric schemes use two keys: private key and public key
• Only the owner of the private key can sign messages using the

private key
• Everyone else can verify the signature using the public key

CSED415 – Spring 2024 9

Digital signatures

• Method:
• Given: A key pair 𝑘!, 𝑘"

• 𝑘!: private key (also known as signing key or secret key)
• 𝑘": public key

• 𝑆(𝑘" , 𝑚): Sign 𝑚 using secret key 𝑘" to generate signature 𝜎
• 𝑉 𝑘!, 𝑚, 𝜎 : Verify signature 𝜎 of message 𝑚 using public key 𝑘!

CSED415 – Spring 2024 10

Difference in key usage

• Note: Digital signatures use key pair in the opposite order of
asymmetric encryption schemes
• Asymmetric encryption:

• Alice (sender) encrypts using Bob’s (receiver’s) public key 𝑘"
• Bob (receiver) decrypts using his (receiver’s) secret key 𝑘!

• Digital signature:
• Alice (sender) signs using her (sender’s) secret key 𝑘!
• Bob or anyone (receiver) verifies using Alice’s (sender’s) public key 𝑘"

CSED415 – Spring 2024 11

MAC vs Digital signature

• In a MAC scheme (symmetric):
• The verifier must share a secret (key 𝑘) with the sender
• Consequently, the verifier could potentially impersonate the sender!

• Generate MAC tags using the shared key

• In a digital signature scheme (asymmetric):
• The verifier utilizes the sender’s public key

• Does not require any shared secret
• Consequently, the verifier cannot impersonate the sender!

• Only who owns the private key (i.e., the sender) can generate valid signatures

CSED415 – Spring 2024 12

Security of DS

• DS scheme

• Intuition for security (Same as MAC’s)
• Unforgeability: No polynomial time adversary should be able to

produce forgery (i.e., 𝑚 and sig 𝜎, where 𝑚 was never queried to 𝑆)
with non-negligible probability, even after seeing multiple legitimate
(𝑚, 𝜎) pairs

CSED415 – Spring 2024 13

𝑘!, 𝑘" Alice’s 𝑘!
𝑚

𝑆(𝑘", 𝑚)𝑘" 𝜎 𝑉(𝑘!, 𝑚, 𝜎) 𝑘!

𝑚 𝜎 𝑚 𝜎

1 (valid) / 0 (fake)

Security of DS

• Let’s utilize the Vanilla RSA encryption for building 𝑆 and 𝑉
• Recall RSA:

• Select two large primes 𝑝 and 𝑞. 𝑁 = 𝑝𝑞
• Compute 𝜑 𝑁 = (𝑝 − 1)(𝑞 − 1)
• Select 𝑘", which is coprime to 𝜑(𝑁) // 𝑘" = 𝑒 (notation in Lec 10)
• Compute 𝑘! = 𝑘"+,𝑚𝑜𝑑 𝜑(𝑁) // 𝑘! = 𝑑 (notation in Lec 10)
• Ciphertext 𝑐 ← 𝐸 𝑘", 𝑁,𝑚 = 𝑚-! 𝑚𝑜𝑑 𝑁
• Decrypted 𝑚 ← 𝐷 𝑘!, 𝑁, 𝑐 = 𝑐-" 𝑚𝑜𝑑 𝑁

CSED415 – Spring 2024 14

à Key property (Euler’s theorem): 𝑚-!-" 	𝑚𝑜𝑑	𝑁 = 𝑚
The order of 𝑘" and 𝑘! does not matter!

Security of DS

• Let’s utilize the Vanilla RSA encryption for building 𝑆 and 𝑉
• Message 𝑚, secret key 𝑘", public key (𝑘!, 𝑁)
• Sign 𝑆 𝑁, 𝑘" , 𝑚 : 𝜎 ← 𝑚#! 𝑚𝑜𝑑 𝑁
• Send 𝑚 and 𝜎
• Verify 𝑉(𝑁, 𝑘!, 𝜎):

• 𝑚′ ← 𝜎-! 𝑚𝑜𝑑 𝑁 // message retrieved by decrypting 𝜎
• If 𝑚 = 𝑚′ then return 1, else return 0

CSED415 – Spring 2024 15

à Can an attacker forge a valid pair (𝑚, 𝜎)?
Yes! Any attacker can forge 𝑚 = 1 and 𝜎 = 1.
Verification: 𝑚′ ← 𝜎-! 	𝑚𝑜𝑑	𝑁 = 1-! 	𝑚𝑜𝑑	𝑁 = 1.
 𝑚 = 𝑚′ holds. Return true

Secure DS: Hash-then-sign

• Countermeasure: Hash the message first
• Message 𝑚, secret key 𝑘", public key (𝑘!, 𝑁)
• ℎ ← 𝐻(𝑚)
• Sign 𝑆 𝑁, 𝑘" , ℎ : 𝜎 ← ℎ#! 𝑚𝑜𝑑 𝑁
• Send 𝑚 and 𝜎
• Verify 𝑉(𝑁, 𝑘!, 𝜎):

• ℎ ← 𝐻 𝑚 // compute the hash of the received message 𝑚
• ℎ. ← 𝜎-! 𝑚𝑜𝑑 𝑁 // hash retrieved by decrypting 𝜎
• if ℎ = ℎ′ then return 1, else return 0

CSED415 – Spring 2024 16

à The previous forgery using (𝑚 = 1, 𝜎 = 1) no longer works

Summary: Digital signature using hash and RSA

CSED415 – Spring 2024 17

𝑁
𝑘!, 𝑘"

𝑁
Alice’s 𝑘!𝑚

ℎ#! 	𝑚𝑜𝑑	𝑁

𝑘"

𝜎

𝜎#"	𝑚𝑜𝑑	𝑁

𝑚 𝜎 𝑚 𝜎

1 (valid) / 0 (fake)

𝐻(𝑚)

ℎ

𝐻(𝑚) ℎ′

ℎ

same?

We can now provide integrity using an asymmetric scheme!

Sign

Verify

Digital signature in practice

• SSH (secure shell) – passwordless authentication

CSED415 – Spring 2024 18

Server

Initial setup for account “Alice”
1. Alice logs in using password
2. Register Alice’s public key in /home/Alice/.ssh/authorized_keys
3. Disable password login in ssh configurationAlice

Passwordless login
1. Alice wants to log in
2. Alice signs her identity using her secret key and sends it to the server
3. Using the stored public key of Alice, the server verifies Alice’s identity
4. Alice logs in without using password

Only Alice can securely log in as long as her secret key is not leaked

Rethinking “authentication” problem

• Pizza prank
• Mallory creates an e-mail order:

and signs the order with his
secret key
• Mallory sends the order to Pizza Store
• Pizza Store asks Mallory, “Hey Bob, send us your public key”
• Mallory sends his public key
• Pizza Store verifies the signature and delivers four pepperoni pizzas

to Bob
• Bob is vegan

CSED415 – Spring 2024 19

Dear Pizza Store,
Please deliver me four pepperoni pizzas.
Thank you,
- Bob

Are public keys enough
for strong authentication?

Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication
Code (MAC) • Digital signature

CIA at the same time • Authenticated encryption

CSED415 – Spring 2024 20

✅
✅
✅

Tools
• Secure key exchange
• Hash
✅

✅
✅

✅

✅

✅

✅

Really?

Certification Authorities

CSED415 – Spring 2024 21

Problem: Distributing public keys

CSED415 – Spring 2024 22

𝑘!$, 𝑘"$
Generate secret-public key pair

Hey Bob, I want to talk to you.
Give me your public key.

Send 𝑘!$Send 𝑘!%Receive 𝑘!%
(Thinks it’s Bob’s pubkey)

Encrypt 𝑚 using 𝑘!%

Send 𝑐 = 𝑚#"#	𝑚𝑜𝑑	𝑁 Decrypt 𝑐 using 𝑘"%

𝑘!%, 𝑘"%
Generate secret-public key pair

Store 𝑘!$

Encrypt 𝑚′ using 𝑘!$
Alter 𝑚 to 𝑚′

Decrypt 𝑐′ using 𝑘"$

Sees 𝑚& =	Hate you, Bob again..

Problem: Distributing public keys

CSED415 – Spring 2024 23

𝑘!$, 𝑘"$
Generate secret-public key pair

Hey Bob, I want to talk to you.
Give me your public key.

Send 𝑘!$Send 𝑘!%Receive 𝑘!%
(Thinks it’s Bob’s pubkey)

Encrypt 𝑚 using 𝑘!%

Send 𝑐 = 𝑚#"#	𝑚𝑜𝑑	𝑁 Decrypt 𝑐 using 𝑘"%

𝑘!%, 𝑘"%
Generate secret-public key pair

Store 𝑘!$

Encrypt 𝑚′ using 𝑘!$
Alter 𝑚 to 𝑚′

Decrypt 𝑐′ using 𝑘"$

Sees 𝑚& =	Hate you, Bob again..

Man-in-the-Middle (MitM) attack becomes possible
by merely replacing the public key

Problem: Distributing public keys

• Countermeasure idea
• Sign Bob’s public key to prevent tampering?

• Dilemma:
• For verification, we require his public key
• Yet, the purpose was to verify Bob’s public key in the first place
• Creates a circular problem!

• Alice cannot fully trust any public key

CSED415 – Spring 2024 24

We need a “root of trust”!

Establishing root of trust: Trust-on-first-use (TOFU)

• Trust the public key that is used for the initial communication
and warn the user if the key changes in the future
• Rationale: Attacks are not frequent, so assume that the initial

communication was not attacked
• Used by SSH (Secure Shell)

• Connect to a new server from my machine
• Server’s identification is saved on my machine

(in ~/.ssh/known_hosts)
• If the server sends a different identification,

we can suspect an MitM attack

CSED415 – Spring 2024 25

Problem: Assumption is too strong

Establishing root of trust: Certification Authority

• Certification Authority (CA) binds a public key to a specific
entity (E)
• Serves as a trusted third party (TTP)

• Procedure
• Bob registers his public key with CA, providing a “proof of identity”
• CA creates an identity binding of Bob and his public key
• The binding, digitally signed by CA’s private key, is the certificate

CSED415 – Spring 2024 26

𝑆(𝑘"'(, 𝑖𝑑$)𝑖𝑑$ ← 𝐵 ⋈ 𝑘!$ 𝑐𝑒𝑟𝑡$

Certification Authority (CA)

• Now when Alice wants Bob’s public key
• Alice gets Bob’s certificate (𝑐𝑒𝑟𝑡$) from the CA
• Alice applies the CA’s public key to verify Bob’s identity

• If Alice trusts the CA (root of trust), Alice can trust that Bob’s public
key is truly Bob’s

CSED415 – Spring 2024 27

𝑉(𝑘!'(, 𝑐𝑒𝑟𝑡$) 𝑖𝑑$ ← 𝐵 ⋈ 𝑘!$𝑐𝑒𝑟𝑡$

Building a practical CA

• Naïve idea: Make a central, trusted directory (TD) from which
you can fetch anyone’s public key
• The TD has a public/secret key pair: 𝑘!%& and 𝑘"%&

• The directory publishes 𝑘!%& to everyone
• When someone requests Bob’s public key, the directory sends a

certificate for Bob’s identity
• 𝑐𝑒𝑟𝑡?, which is 𝐵 ⋈ 𝑘"? signed using 𝑘!@A

• If you trust the TD, you trust every public key

CSED415 – Spring 2024 28

Building a practical CA

• Naïve idea: Make a central, trusted directory (TD) from which
you can fetch anyone’s public key
• Problems
• Scalability: One directory will not have enough computing power

to serve all entities in the entire world
• Single point of failure:

• If the TD fails, every service depending on TD becomes unavailable
• If the TD is compromised, you cannot trust anyone
• If the TD is compromised, it is extremely difficult to recover

CSED415 – Spring 2024 29

Building a practical CA

• Practical idea #1: Hierarchical trust model
• The roots of trust may delegate the identity bindings and signing

power to other authorities
• Alice’s public key is 𝑘"B and I trust her to sign for POSTECH
• Bob’s public key is 𝑘"? and I trust him to sign for the CSE department
• Charlie’s public key is 𝑘"C . (I don’t let him sign for anyone else)

• Hierarchy
• Root CA
• Alice and Bob are intermediate CAs

CSED415 – Spring 2024 30

Solves the scalability problem

Building a practical CA

• Practical idea #2: Multiple trust anchors
• There are more than 200 root CAs in the world
• Most operating systems provide a built-in list of trusted root CAs

• 161 root CAs and 10 blocked CAs in MacOS 14
• Most web browsers, too

CSED415 – Spring 2024 31

Solves the single-point-of-failure problem

Building a practical CA

• New problem: Revocation
• What if a CA messes up and issues a bad certificate?

• e.g., CA: “Bob’s public key is 𝑘"D”

• Everyone will trust the wrong public key
• If Mallory signs messages, people will think Bob did

CSED415 – Spring 2024 32

We need to be able to revoke bad certificates!

Building a practical CA – Revocation

• Approach #1: Each certificate has an expiration date
• When the certificate expires, request a new certificate from a CA
• Bad certificates will eventually become invalid once they expire

• Strength: No bad certificate remain forever
• Weakness: Everybody must renew frequently (overhead)
• Frequent renewal: More security, less usability
• Infrequent renewal: Less security, more usability

CSED415 – Spring 2024 33

Building a practical CA – Revocation

• Approach #2: Periodically release a list of invalidated
certificates
• Users must periodically download a Certification Revocation List

• Strength: Real-time revocation (immediately add to the list)
• Weakness:
• Size of list grows linearly to the number of revoked certificates
• Cannot know which certificates are revoked before downloading CRL

CSED415 – Spring 2024 34

Current certificate standard: X.509

• Certificate contains
• Issuer’s name
• Entity’s name, address, domain name, …
• Entity’s public key
• Digital signature of the certificate (signed with the issuer’s secret key)

• Core components
• Certificates and CAs
• Certificate revocation list

CSED415 – Spring 2024 35

Summary

• Certificate: A signed attestation of identity
• Trusted directory: Once server holds all keys
• Certificate authorities: Provide delegated trust from a pool of

multiple root CAs
• Root CA can sign certificates for intermediate CAs
• Certificates can be revoked (timed expiry or revocation list)

CSED415 – Spring 2024 36

Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication
Code (MAC) • Digital signature + CA

CIA at the same time • Authenticated encryption ???

CSED415 – Spring 2024 37

✅
✅
✅

Tools
• Secure key exchange
• Hash
✅

✅
✅

✅

✅

✅

✅ ✅

Multi-user Setting
and Signcryption

CSED415 – Spring 2024 38

Multi-user setting complications

• Security of asymmetric schemes considered a single user
• “Can sender have confidentiality?”
• “Can receiver verify a signature?”

• Real world is much more complex

CSED415 – Spring 2024 39

𝑘!)
𝑘!*

𝑘!+

𝑘!,𝑘!-

𝑘!.

𝑐)

𝑐* 𝑐+

𝑐,
𝑐-

𝑐.

Multi-user setting complications

• Hastad-type attack on RSA

CSED415 – Spring 2024 40

𝑁)

𝑁*

𝑁+

Three people select different
large numbers 𝑁,, 𝑁E, 𝑁F
for RSA key generation

Multi-user setting complications

• Hastad-type attack on RSA

CSED415 – Spring 2024 41

𝑁)
𝑘!) = 3

𝑁*
𝑘!* = 3

𝑁+
𝑘!+ = 3

Three people happen to select
the same public key 𝑘"H

relatively to 𝜑 𝑁H , e.g., 𝑘"H = 3

Multi-user setting complications

• Hastad-type attack on RSA

CSED415 – Spring 2024 42

𝑁)
𝑘!) = 3

𝑁*
𝑘!* = 3

𝑁+
𝑘!+ = 3

The sender wants to send 𝑚
and RSA-encrypts it using 𝑁H, 𝑘"H

for each recipient

𝑐)=
𝑚
+ 	𝑚𝑜

𝑑	𝑁)

𝑐* = 𝑚+	𝑚𝑜𝑑	𝑁*
𝑐+ = 𝑚 +	𝑚𝑜𝑑	𝑁

+

Multi-user setting complications

• Hastad-type attack on RSA

CSED415 – Spring 2024 43

𝑁)
𝑘!) = 3

𝑁*
𝑘!* = 3

𝑁+
𝑘!+ = 3

Only the three recipients,
individually, should be able to
decrypt 𝑚 from 𝑐H using their 𝑘!H

𝑐)=
𝑚
+ 	𝑚𝑜

𝑑	𝑁)

𝑐* = 𝑚+	𝑚𝑜𝑑	𝑁*
𝑐+ = 𝑚 +	𝑚𝑜𝑑	𝑁

+

Multi-user setting complications

• Hastad-type attack on RSA

CSED415 – Spring 2024 44

𝑁)
𝑘!) = 3

𝑁*
𝑘!* = 3

𝑁+
𝑘!+ = 3

If 𝑁,, 𝑁E, 𝑁F are relatively prime,
then by Chinese Remainder Theorem,
• 𝑐, = 𝑚F	𝑚𝑜𝑑	𝑁,
• 𝑐E = 𝑚F	𝑚𝑜𝑑	𝑁E
• 𝑐F = 𝑚F	𝑚𝑜𝑑	𝑁F
can be combined to find:

𝑐 = 𝑚F	𝑚𝑜𝑑	𝑁,𝑁E𝑁F
Since 𝑚F < N,NENF, we get 𝑚 = # 𝑐

𝑐)=
𝑚
+ 	𝑚𝑜

𝑑	𝑁)

𝑐* = 𝑚+	𝑚𝑜𝑑	𝑁*
𝑐+ = 𝑚 +	𝑚𝑜𝑑	𝑁

+

𝑚 can be completely recovered using public keys

Signcryption

• Signcryption is a public key-based primitive that assures
confidentiality, integrity, and authenticity at the same time
• Not by separately utilizing encryption and digital signatures
• Goal is to combine encryption and signing into a single operation

• e.g., sign-then-encrypt?
• Signing involves an encryption (using a secret key)
• Encrypting involves another encryption (using a public key)
à Redundancy (== inefficiency)

CSED415 – Spring 2024 45

Signcryption

• Signcryption presents significant challenges:
• Strong security should be provided:

• Indistinguishability under chosen plaintext/ciphertext attacks
• Unforgeability

• Multi-user setting poses more challenges
• e.g., Hastad-type attack

• As of now, no provably-secure algorithm has been developed

CSED415 – Spring 2024 46

Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication
Code (MAC) • Digital signature + CA

CIA at the same time • Authenticated encryption N/A

CSED415 – Spring 2024 47

✅
✅
✅

Tools
• Secure key exchange
• Hash
✅

✅
✅

✅

✅

✅

✅ ✅

Coming up next

• What do we do in the real world?
• Applications (e.g., Internet Security Protocols)
• Incidents of crypto-based attacks

CSED415 – Spring 2024 48

Questions?

CSED415 – Spring 2024 49

