
Seulbae Kim

CSED415: Computer Security
Spring 2024

Lec 22: Anti-malware

Recap

• Malware: A malicious software
• A program that is inserted into a system, usually covertly, with the

intent of compromising the CIA of the victim’s system

• Malware of our interests:
• Virus, worm, trojan, rootkit, backdoor, spyware, bots, and ransomware

• Anti-malware (== Anti-virus) is a software or technique
that aims to protect our systems from malware

CSED415 – Spring 2024 2

Anti-virus (AV)

CSED415 – Spring 2024 3

Fred Cohen’s problem

• Given an arbitrary program, can we design a Turing machine
that determines whether the program is malicious or not?
• In automata theory, a Turing machine computes a function

• Can we define a function 𝑓, such that TM computes 𝑓(𝑥) as follows:
𝑓 𝑥 = &	1	 𝑖𝑓	𝑥	𝑖𝑠	𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠

	0	 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	 ?

CSED415 – Spring 2024 4

TM
input output

𝑓, 𝑥 𝑓 𝑥 = 𝑦

A paradox

• Let’s define a function named is_virus
• Input: A program
• Output: True if virus, False if not

CSED415 – Spring 2024 5

def is_virus(prog):
 # test the prog and return 1 or 0

Assume such function actually exists

A paradox

• Write a program named real_virus

CSED415 – Spring 2024 6

if __name__ == __main__:
 if is_virus(real_virus):
 return # do nothing

 else:
 infect_other_prog () # viral activity
 destroy_user_data()
 return

real_virus is a self-contradictory program!

Fred Cohen’s conclusion

• Virus detection is an undecidable problem
• Undecidable: Proved to be impossible to construct an algorithm

that always correctly determines the answer

• Since the detection is an undecidable problem,
the removal of virus is not always guaranteed
• You have to first detect a virus in order to remove it

CSED415 – Spring 2024 7

How do detect malware then?

Naïve approach for malware detection

• Goal: Check if a file is identical to a known malware
• Approach: Signature matching
• Collect malware samples (e.g., worm binaries)
• Compute hashes of the malware samples
• Compute the hash of the target file and compare it against the

hashes of malware samples

CSED415 – Spring 2024 8

What is wrong with this approach?

Naïve approach for malware detection

• Problem of hash matching: Too many ways to bypass
• Add a dummy code (e.g., dead code)

• A function that is not used
• A function that does nothing significant
• nop instructions

• Change code order (e.g., define function A after B / B after A)
• Replace instructions with semantically equivalent ones

• e.g., inc eax à add eax, 1

CSED415 – Spring 2024 9

A difference in a single bit results in totally different hash values

Another naïve approach for malware detection

• Pattern matching
• Match using regular expression (RE)
• e.g., bytecode of a execve(“/bin/sh”) shellcode

• ...
6a 0b push 0xb
58 pop eax
cd 80 int 0x80
• RE pattern: (\x6a\x0b\x58)(.*)(\xcd\x80)

CSED415 – Spring 2024 10

(2) anything (3) int 0x80(1) push 0xb
pop eax

Matches any bytecode
that has (1), (2), and (3)

Another naïve approach for malware detection

• Problem of RE matching: Still easy to bypass
• RE pattern: (\x6a\x0b\x58)(.*)(\xcd\x80)
• Easy to generate semantically identical code to push 0xb; pop eax;

• mov eax, 0xb;
• mov eax, 0xa; inc eax;
• …
à The above RE pattern misses these

CSED415 – Spring 2024 11

Recent malware utilize “self-modifying code” to make
pattern-based detection even more challenging

Polymorphism and
Metamorphism

CSED415 – Spring 2024 12

Polymorphic code

• Definition:
• A code that mutates itself to change its appearance while keeping

the original algorithm intact
• Malware often employ polymorphism to bypass signature/pattern

matching-based AVs

• Usage
• Malicious use: Bypass malware detection
• Benign use: Software protection

• e.g., make reverse engineering tricky

CSED415 – Spring 2024 13

Polymorphism example

Decryption routine

jmp 0xdeadbeef

...

Encrypted code

CSED415 – Spring 2024 14

Reads the encrypted code and decrypts it

0xdeadbeef

Stores the result at the location where
the encrypted code was stored

Polymorphism example

Decryption routine

jmp 0xdeadbeef

...

Original code

CSED415 – Spring 2024 15

0xdeadbeef

Jumps to 0xdeadbeef,
i.e., original entry point

Polymorphism example

Decryption routine

jmp 0xdeadbeef

...

Original code

CSED415 – Spring 2024 16

0xdeadbeef Original malware code is executed

We can produce unlimited number of
semantically identical binaries that

have different signatures (e.g., hash)
by just changing the encryption key

Creating partial signatures

Decryption routine

jmp 0xdeadbeef

...

Encrypted code 1

CSED415 – Spring 2024 17

Decryption routine

jmp 0xdeadbeef

...

Encrypted code 2

Decryption routine

jmp 0xdeadbeef

...

Encrypted code 3

This part does not change à AVs can create signatures of the decryption routine

Creating partial signatures

Decryption routine

CSED415 – Spring 2024 18

Decryption routine Decryption routine

Can polymorphism be applied even to the decryption routine?

Polymorphic encryption

CSED415 – Spring 2024 19

• Goal:
• Creating multiple unique pairs of encryption and decryption routines

from one code

Original code

Polymorphic
encryption

engine

Decryption routine 1
Encrypted code 1

Decryption routine 2

Encrypted code 2

Decryption routine 3

Encrypted code 3

Polymorphic encryption example
for (int i = 0; i < code_len / 4; ++i) {
 v = obc[i]; // obc: int array containing the original bytecode
 key[i] = random_int(); // random 4-byte integer
 op[i] = random_op(); // random operation
 switch (op[i]) {

 case ADD: v += key[i]; break;
 case SUB: v -= key[i]; break;
 case XOR: v ^= key[i]; break;

 ...
 }
 enc[i] = v; // enc: int array containing the encrypted code
}

CSED415 – Spring 2024 20

Polymorphic decryption example
for (int i = 0; i < code_len / 4; ++i) {
 v = enc[i]; // for every 4-byte of the encrypted code
 k = key[i]; // retrieve the key
 switch (op[i]) {
 case ADD: v -= k; break;

 case SUB: v += k; break;
 case XOR: v ^= k; break;
 ...

 }
 dec[i] = v; // store decrypted (original) code in dec
}

CSED415 – Spring 2024 21

à Unroll (i.e., flatten) the loop and embed to malware as decryption routine

Signatures for polymorphic encryption

• Using polymorphic encryption, millions of variants can be
created from a single malware
• Signature database of an AV will rapidly expand if all possible

variants are considered
• Signature-based pattern matching does not help anymore

CSED415 – Spring 2024 22

What can be done?

Potential countermeasure

• In-memory detection
• At some point of time, the original code will be “unpacked” and

stored in the memory to be executed
• Scanning the memory for the original malware code pattern is a

working solution

CSED415 – Spring 2024 23

Decryption routine

jmp 0xdeadbeef

...

Original code

Memory

Potential countermeasure

• Polymorphic malware ends up exposing the unpacked code
• Attacker: Can we completely remove packing/unpacking to bypass

detection?

CSED415 – Spring 2024 24

Metamorphic malware

• Concept
• Do not rely on encryption or decryption (== packing and unpacking)
• Code automatically modifies itself each time it propagates

CSED415 – Spring 2024 25

Propagation
Malicious code

Morphing code

Malicious code’

Morphing code’

Metamorphic malware

• Idea: Use a metamorphic engine

CSED415 – Spring 2024 26

Original code

Metamorphic
engine

New code 1

...
New code 2

New code n

Metamorphic malware

• Metamorphic engine
• Adding dead code

CSED415 – Spring 2024 27

6a 0b push 0xb
58 pop eax
cd 80 int 0x80

6a 0b push 0xb
90 nop
58 pop eax
cd 80 int 0x80

6a 0b push 0xb
43 inc ebx
4b dec ebx
58 pop eax
cd 80 int 0x80

Original code
(invoking execve syscall)

Metamorphic malware

• Metamorphic engine
• Register renaming

CSED415 – Spring 2024 28

31 c9 xor ecx, ecx
6a 04 push 4
59 pop ecx

Original code
(setting args for execve syscall)

31 c9 xor ecx, ecx
6a 04 push 4
5a pop edx
89 d1 mov ecx, edx

...

Metamorphic malware

• Metamorphic engine
• Function reordering

• Reorder the order of invocations for functions that do not affect each other

• Code permutation
• Randomizing
• Compressing and decompressing
• …

CSED415 – Spring 2024 29

setvbuf(stdin, NULL, _IONBF, 0);
setvbuf(stdout, NULL, _IONBF, 0);

setvbuf(stdout, NULL, _IONBF, 0);
setvbuf(stdin, NULL, _IONBF, 0);

Metamorphic malware

Malicious code 1

Morphing engine*

CSED415 – Spring 2024 30

Malicious code 2

Morphing engine*

Malicious code 3

Morphing engine*

* The morphing engine itself could also be metamorphic

In-memory detection no longer works!
Malicious code 1, 2, 3, … (not the unpacked original code)

are loaded onto the memory and get executed

Dynamic Analysis

CSED415 – Spring 2024 31

Dynamic Analysis

• Problem:
• Static analysis (e.g., pattern matching) cannot reliably detect

signatures of self-changing code

• Idea:
• Whether malware is polymorphic or metamorphic, it will eventually

exhibit the same malicious behavior
• We can execute the program and observe the behavior to see if it

matches malicious behaviors

CSED415 – Spring 2024 32

Two categories of behaviorial analysis

• Rule-based approach (== heuristic-based)
• Detect malicious behavior
• e.g., malware-specific behavior (reading sensitive files)

• Anomaly-based approach
• Detect abnormal behavior
• “Normal” and “Abnormal” behaviors should be defined

CSED415 – Spring 2024 33

Rule-based dynamic analysis

• Monitor malicious behaviors with a set of rules
• Attempts to open, view, delete, and/or modify files
• Attempts to format disk drives
• Modifications to the logic of executable files
• Moidification of critical system settings, e.g., start-up scripts
• Initiation of network communications

CSED415 – Spring 2024 34

à Many AV solutions have their own collection of rules

Anomaly-based dynamic analysis

• Idea:
• Define normal (== expected) behavior to identify malicious behavior

• Three types of anomalies
• Point anomalies: Defined with an individual data point
• Contextual anomalies: Defined within a context
• Collective anomalies: Defined with a collection of related data

CSED415 – Spring 2024 35

Anomaly-based dynamic analysis

• Point anomalies
• If an individual data instance can be considered as anomalous

with respect to the rest of data, then the instance is termed as a
point anomaly
• Example: Credit card fraud detection

• Alice typically spends 5~40 USD per transaction
• A transaction (i.e., data instance) for which the amount spent is 20,000 USD

is anomalous

CSED415 – Spring 2024 36

Anomaly-based dynamic analysis

• Contextual anomalies
• If a data instance is anomalous only in a specific context,

then it is termed as a contextual (or conditional) anomaly
• Example: Temperature

• 30 ℃ (86 ℉) at Pohang in December is abnormal
• Totally normal in Singapore or Abu Dhabi (hot all year round)

CSED415 – Spring 2024 37

Anomaly-based dynamic analysis

• Collective anomalies
• If a collection of related data instances is anomalous with respect to

the entire dataset, it is termed as a collective anomaly
• Example: Money transfer

• Alice transfers 200 USD to Mallory - normal
• Bob transfers 200 USD to Mallory - normal
• Claire transfers 200 USD to Mallory - normal
• Dave transfers 200 USD to Mallory - normal
• …
• Zuckerberg transfers 200 USD to Mallory - normal

CSED415 – Spring 2024 38

Abnormal

Anomaly-based dynamic analysis

• Example: Self-immune system
• Collect a sequence of system calls for normally operating programs
• Build a profile of normal behavior based on the sequence
• When we observe discrepancies, we flag them as anomalous

CSED415 – Spring 2024 39

Anomaly-based dynamic analysis

• Example: Self-immune system
• System call sequences of normal execution

CSED415 – Spring 2024 40

open-read-mmap-mmap-open-getrlimit-mmap-close

open-getrlimit-close

open-read-mmap-mmap-open

open-getrlimi-mmap-close

Anomaly-based dynamic analysis

• Example: Self-immune system
• Pairwise syscall profile using sliding window of 4

CSED415 – Spring 2024 41

Syscall pos 1 pos 2 pos 3

open
read mmap mmap

getrlimit - close

read mmap mmap open

mmap

mmap open getrlimit

open getrlimit mmap

close - -

getrlimit mmap close -

Anomaly-based dynamic analysis

• Example: Self-immune system
• Checking a behavior against the profile

CSED415 – Spring 2024 42

open-read-mmap-open-open-getrlimit-mmap-closeBehavior to check:
No match

Syscall pos 1 pos 2 pos 3

open
read mmap mmap

getrlimit - close

read mmap mmap open

mmap

mmap open getrlimit

open getrlimit mmap

close - -

getrlimit mmap close -

Anomaly-based dynamic analysis

• Example: Self-immune system
• Checking a behavior against the profile

CSED415 – Spring 2024 43

open-read-mmap-open-open-getrlimit-mmap-closeBehavior to check:
No match

Syscall pos 1 pos 2 pos 3

open
read mmap mmap

getrlimit - close

read mmap mmap open

mmap

mmap open getrlimit

open getrlimit mmap

close - -

getrlimit mmap close -

Anomaly-based dynamic analysis

• Example: Self-immune system
• Checking a behavior against the profile

CSED415 – Spring 2024 44

open-read-mmap-open-open-getrlimit-mmap-closeBehavior to check:
No match

Syscall pos 1 pos 2 pos 3

open
read mmap mmap

getrlimit - close

read mmap mmap open

mmap

mmap open getrlimit

open getrlimit mmap

close - -

getrlimit mmap close -

Anomaly-based dynamic analysis

• Example: Self-immune system
• Checking a behavior against the profile

CSED415 – Spring 2024 45

open-read-mmap-open-open-getrlimit-mmap-closeBehavior to check:
No match

Syscall pos 1 pos 2 pos 3

open
read mmap mmap

getrlimit - close

read mmap mmap open

mmap

mmap open getrlimit

open getrlimit mmap

close - -

getrlimit mmap close -

Anomaly-based dynamic analysis

• Example: Self-immune system
• Checking a behavior against the profile

CSED415 – Spring 2024 46

Syscall pos 1 pos 2 pos 3

open
read mmap mmap

getrlimit - close

read mmap mmap open

mmap

mmap open getrlimit

open getrlimit mmap

close - -

getrlimit mmap close -

open-read-mmap-open-open-getrlimit-mmap-closeBehavior to check:
Match

Mismatch rate: 4/5 = 80% à Anomalous!

Anomaly-based dynamic analysis

• How to obtain execution profile?
• Using tracers

• Tracers allow you to observe and/or intercept syscalls
• Ptrace, strace, ltrace, …

• Attaching debuggers to running process
• GDB, LLDB, WinDbg, …

• Code instrumentation
• Inject additional code into programs to track behavior

• Adding printf()s for debugging is a naïve form of instrumentation!
• Pin, DynamoRio, Valgrind, …

CSED415 – Spring 2024 47

Anomaly-based dynamic analysis

• Running potential malware is a bad idea
• Sandboxing is recommended

• e.g., Dynamically analyze a file in a virtual machine

CSED415 – Spring 2024 48

Summary

• Malware detection is an undecidable problem
• Static analysis
• Fast - pattern matching w/o execution
• Safe - no execution
• Prone to false negatives - may miss self-modifying malware

• Dynamic analysis
• Slow - need to execute
• Potentially unsafe - need to execute potential malware
• Better detection - resilient to poly/metamorphism

CSED415 – Spring 2024 49

Questions?

CSED415 – Spring 2024 50

