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Recap

• Malware: A malicious software
• A program that is inserted into a system, usually covertly, with the 

intent of compromising the CIA of the victim’s system

• Malware of our interests:
• Virus, worm, trojan, rootkit, backdoor, spyware, bots, and ransomware

• Anti-malware (== Anti-virus) is a software or technique 
that aims to protect our systems from malware
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Anti-virus (AV)
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Fred Cohen’s problem

• Given an arbitrary program, can we design a Turing machine 
that determines whether the program is malicious or not?
• In automata theory, a Turing machine computes a function

• Can we define a function 𝑓, such that TM computes 𝑓(𝑥) as follows:
𝑓 𝑥 = &	1	 𝑖𝑓	𝑥	𝑖𝑠	𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠

	0	 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	 ?
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TM
input output

𝑓, 𝑥 𝑓 𝑥 = 𝑦



A paradox

• Let’s define a function named is_virus
• Input: A program
• Output: True if virus, False if not
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def is_virus(prog):
    # test the prog and return 1 or 0

Assume such function actually exists



A paradox

• Write a program named real_virus
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if __name__ == __main__: 
    if is_virus(real_virus):
        return # do nothing

    else:
        infect_other_prog () # viral activity
        destroy_user_data()
        return

real_virus is a self-contradictory program!



Fred Cohen’s conclusion

• Virus detection is an undecidable problem
• Undecidable: Proved to be impossible to construct an algorithm 

that always correctly determines the answer

• Since the detection is an undecidable problem, 
the removal of virus is not always guaranteed
• You have to first detect a virus in order to remove it
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How do detect malware then?



Naïve approach for malware detection

• Goal: Check if a file is identical to a known malware
• Approach: Signature matching
• Collect malware samples (e.g., worm binaries)
• Compute hashes of the malware samples
• Compute the hash of the target file and compare it against the 

hashes of malware samples
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What is wrong with this approach?



Naïve approach for malware detection

• Problem of hash matching: Too many ways to bypass
• Add a dummy code (e.g., dead code)

• A function that is not used
• A function that does nothing significant
• nop instructions

• Change code order (e.g., define function A after B / B after A)
• Replace instructions with semantically equivalent ones

• e.g., inc eax à add eax, 1
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A difference in a single bit results in totally different hash values



Another naïve approach for malware detection

• Pattern matching
• Match using regular expression (RE)
• e.g., bytecode of a execve( “/bin/sh”) shellcode

• ...
6a 0b  push 0xb
58     pop eax
cd 80  int 0x80
• RE pattern: (\x6a\x0b\x58)(.*)(\xcd\x80)
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(2) anything (3) int 0x80(1) push 0xb
pop eax

Matches any bytecode
that has (1), (2), and (3)



Another naïve approach for malware detection

• Problem of RE matching: Still easy to bypass
• RE pattern: (\x6a\x0b\x58)(.*)(\xcd\x80)
• Easy to generate semantically identical code to push 0xb; pop eax;

• mov eax, 0xb;
• mov eax, 0xa; inc eax;
• …
à The above RE pattern misses these
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Recent malware utilize “self-modifying code” to make 
pattern-based detection even more challenging



Polymorphism and 
Metamorphism

CSED415 – Spring 2024 12



Polymorphic code

• Definition:
• A code that mutates itself to change its appearance while keeping 

the original algorithm intact
• Malware often employ polymorphism to bypass signature/pattern 

matching-based AVs

• Usage
• Malicious use: Bypass malware detection
• Benign use: Software protection

• e.g., make reverse engineering tricky
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Polymorphism example

Decryption routine

jmp 0xdeadbeef

...

Encrypted code
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Reads the encrypted code and decrypts it

0xdeadbeef

Stores the result at the location where
the encrypted code was stored



Polymorphism example

Decryption routine

jmp 0xdeadbeef

...

Original code
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0xdeadbeef

Jumps to 0xdeadbeef, 
i.e., original entry point



Polymorphism example

Decryption routine

jmp 0xdeadbeef

...

Original code
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0xdeadbeef Original malware code is executed

We can produce unlimited number of 
semantically identical binaries that

have different signatures (e.g., hash)
by just changing the encryption key



Creating partial signatures

Decryption routine

jmp 0xdeadbeef

...

Encrypted code 1
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Decryption routine

jmp 0xdeadbeef

...

Encrypted code 2

Decryption routine

jmp 0xdeadbeef

...

Encrypted code 3

This part does not change à AVs can create signatures of the decryption routine



Creating partial signatures

Decryption routine
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Decryption routine Decryption routine

Can polymorphism be applied even to the decryption routine?



Polymorphic encryption
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• Goal:
• Creating multiple unique pairs of encryption and decryption routines 

from one code

Original code

Polymorphic
encryption

engine

Decryption routine 1
Encrypted code 1

Decryption routine 2

Encrypted code 2

Decryption routine 3

Encrypted code 3



Polymorphic encryption example
for (int i = 0; i < code_len / 4; ++i) {
  v = obc[i]; // obc: int array containing the original bytecode
  key[i] = random_int(); // random 4-byte integer
  op[i] = random_op(); // random operation
  switch (op[i]) {

    case ADD: v += key[i]; break;
    case SUB: v -= key[i]; break;
    case XOR: v ^= key[i]; break;

    ...
  }
  enc[i] = v; // enc: int array containing the encrypted code
}
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Polymorphic decryption example
for (int i = 0; i < code_len / 4; ++i) {
  v = enc[i]; // for every 4-byte of the encrypted code
  k = key[i]; // retrieve the key
  switch (op[i]) {
    case ADD: v -= k; break;

    case SUB: v += k; break;
    case XOR: v ^= k; break;
    ...

  }
  dec[i] = v; // store decrypted (original) code in dec
}
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à Unroll (i.e., flatten) the loop and embed to malware as decryption routine



Signatures for polymorphic encryption

• Using polymorphic encryption, millions of variants can be 
created from a single malware
• Signature database of an AV will rapidly expand if all possible 

variants are considered
• Signature-based pattern matching does not help anymore
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What can be done?



Potential countermeasure

• In-memory detection
• At some point of time, the original code will be “unpacked” and 

stored in the memory to be executed
• Scanning the memory for the original malware code pattern is a 

working solution
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Decryption routine

jmp 0xdeadbeef

...

Original code

Memory



Potential countermeasure

• Polymorphic malware ends up exposing the unpacked code
• Attacker: Can we completely remove packing/unpacking to bypass 

detection?
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Metamorphic malware

• Concept
• Do not rely on encryption or decryption (== packing and unpacking)
• Code automatically modifies itself each time it propagates
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Propagation
Malicious code

Morphing code

Malicious code’

Morphing code’



Metamorphic malware

• Idea: Use a metamorphic engine
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Original code

Metamorphic
engine

New code 1

...
New code 2

New code n



Metamorphic malware

• Metamorphic engine
• Adding dead code
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6a 0b  push 0xb
58     pop eax
cd 80  int 0x80

6a 0b  push 0xb
90     nop
58     pop eax
cd 80  int 0x80

6a 0b  push 0xb
43     inc ebx
4b     dec ebx
58     pop eax
cd 80  int 0x80

Original code
(invoking execve syscall)



Metamorphic malware

• Metamorphic engine
• Register renaming
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31 c9  xor ecx, ecx
6a 04  push 4
59     pop ecx

Original code
(setting args for execve syscall)

31 c9  xor ecx, ecx
6a 04  push 4
5a     pop edx
89 d1  mov ecx, edx

...



Metamorphic malware

• Metamorphic engine
• Function reordering

• Reorder the order of invocations for functions that do not affect each other

• Code permutation
• Randomizing
• Compressing and decompressing
• …
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setvbuf(stdin, NULL, _IONBF, 0);
setvbuf(stdout, NULL, _IONBF, 0);

setvbuf(stdout, NULL, _IONBF, 0);
setvbuf(stdin, NULL, _IONBF, 0);



Metamorphic malware

Malicious code 1

Morphing engine*
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Malicious code 2

Morphing engine*

Malicious code 3

Morphing engine*

* The morphing engine itself could also be metamorphic

In-memory detection no longer works!
Malicious code 1, 2, 3, … (not the unpacked original code) 

are loaded onto the memory and get executed



Dynamic Analysis
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Dynamic Analysis

• Problem:
• Static analysis (e.g., pattern matching) cannot reliably detect 

signatures of self-changing code

• Idea:
• Whether malware is polymorphic or metamorphic, it will eventually 

exhibit the same malicious behavior
• We can execute the program and observe the behavior to see if it 

matches malicious behaviors
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Two categories of behaviorial analysis

• Rule-based approach (== heuristic-based)
• Detect malicious behavior
• e.g., malware-specific behavior (reading sensitive files)

• Anomaly-based approach
• Detect abnormal behavior
• “Normal” and “Abnormal” behaviors should be defined
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Rule-based dynamic analysis

• Monitor malicious behaviors with a set of rules
• Attempts to open, view, delete, and/or modify files
• Attempts to format disk drives
• Modifications to the logic of executable files
• Moidification of critical system settings, e.g., start-up scripts
• Initiation of network communications
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à Many AV solutions have their own collection of rules



Anomaly-based dynamic analysis

• Idea:
• Define normal (== expected) behavior to identify malicious behavior

• Three types of anomalies
• Point anomalies: Defined with an individual data point
• Contextual anomalies: Defined within a context
• Collective anomalies: Defined with a collection of related data

CSED415 – Spring 2024 35



Anomaly-based dynamic analysis

• Point anomalies
• If an individual data instance can be considered as anomalous 

with respect to the rest of data, then the instance is termed as a 
point anomaly
• Example: Credit card fraud detection

• Alice typically spends 5~40 USD per transaction
• A transaction (i.e., data instance) for which the amount spent is 20,000 USD 

is anomalous

CSED415 – Spring 2024 36



Anomaly-based dynamic analysis

• Contextual anomalies
• If a data instance is anomalous only in a specific context, 

then it is termed as a contextual (or conditional) anomaly
• Example: Temperature

• 30 ℃ (86 ℉) at Pohang in December is abnormal
• Totally normal in Singapore or Abu Dhabi (hot all year round)
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Anomaly-based dynamic analysis

• Collective anomalies
• If a collection of related data instances is anomalous with respect to 

the entire dataset, it is termed as a collective anomaly
• Example: Money transfer

• Alice transfers 200 USD to Mallory - normal
• Bob transfers 200 USD to Mallory - normal
• Claire transfers 200 USD to Mallory - normal
• Dave transfers 200 USD to Mallory - normal
• …
• Zuckerberg transfers 200 USD to Mallory - normal
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Abnormal



Anomaly-based dynamic analysis

• Example: Self-immune system
• Collect a sequence of system calls for normally operating programs
• Build a profile of normal behavior based on the sequence
• When we observe discrepancies, we flag them as anomalous
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Anomaly-based dynamic analysis

• Example: Self-immune system
• System call sequences of normal execution
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open-read-mmap-mmap-open-getrlimit-mmap-close

open-getrlimit-close

open-read-mmap-mmap-open

open-getrlimi-mmap-close



Anomaly-based dynamic analysis

• Example: Self-immune system
• Pairwise syscall profile using sliding window of 4
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Syscall pos 1 pos 2 pos 3

open
read mmap mmap

getrlimit - close

read mmap mmap open

mmap

mmap open getrlimit

open getrlimit mmap

close - -

getrlimit mmap close -



Anomaly-based dynamic analysis

• Example: Self-immune system
• Checking a behavior against the profile
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open-read-mmap-open-open-getrlimit-mmap-closeBehavior to check:
No match

Syscall pos 1 pos 2 pos 3

open
read mmap mmap

getrlimit - close

read mmap mmap open

mmap

mmap open getrlimit

open getrlimit mmap

close - -

getrlimit mmap close -



Anomaly-based dynamic analysis

• Example: Self-immune system
• Checking a behavior against the profile
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open-read-mmap-open-open-getrlimit-mmap-closeBehavior to check:
No match

Syscall pos 1 pos 2 pos 3

open
read mmap mmap

getrlimit - close

read mmap mmap open

mmap

mmap open getrlimit

open getrlimit mmap

close - -

getrlimit mmap close -



Anomaly-based dynamic analysis

• Example: Self-immune system
• Checking a behavior against the profile
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open-read-mmap-open-open-getrlimit-mmap-closeBehavior to check:
No match

Syscall pos 1 pos 2 pos 3

open
read mmap mmap

getrlimit - close

read mmap mmap open

mmap

mmap open getrlimit

open getrlimit mmap

close - -

getrlimit mmap close -



Anomaly-based dynamic analysis

• Example: Self-immune system
• Checking a behavior against the profile
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open-read-mmap-open-open-getrlimit-mmap-closeBehavior to check:
No match

Syscall pos 1 pos 2 pos 3

open
read mmap mmap

getrlimit - close

read mmap mmap open

mmap

mmap open getrlimit

open getrlimit mmap

close - -

getrlimit mmap close -



Anomaly-based dynamic analysis

• Example: Self-immune system
• Checking a behavior against the profile
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Syscall pos 1 pos 2 pos 3

open
read mmap mmap

getrlimit - close

read mmap mmap open

mmap

mmap open getrlimit

open getrlimit mmap

close - -

getrlimit mmap close -

open-read-mmap-open-open-getrlimit-mmap-closeBehavior to check:
Match

Mismatch rate: 4/5 = 80% à Anomalous!



Anomaly-based dynamic analysis

• How to obtain execution profile?
• Using tracers

• Tracers allow you to observe and/or intercept syscalls
• Ptrace, strace, ltrace, …

• Attaching debuggers to running process
• GDB, LLDB, WinDbg, …

• Code instrumentation
• Inject additional code into programs to track behavior

• Adding printf()s for debugging is a naïve form of instrumentation!
• Pin, DynamoRio, Valgrind, …
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Anomaly-based dynamic analysis

• Running potential malware is a bad idea
• Sandboxing is recommended

• e.g., Dynamically analyze a file in a virtual machine
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Summary

• Malware detection is an undecidable problem
• Static analysis
• Fast - pattern matching w/o execution
• Safe - no execution
• Prone to false negatives - may miss self-modifying malware

• Dynamic analysis
• Slow - need to execute
• Potentially unsafe - need to execute potential malware
• Better detection - resilient to poly/metamorphism
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Questions?
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