
Seulbae Kim

CSED415: Computer Security
Spring 2024

Lec 25: Fuzzing

Administrivia

• All labs completed
• Grace period for Lab 5 ends on May 26

• Final exam will be on June 4
• Note: June 6 is a national holiday

CSED415 – Spring 2024 2

Administrivia

• Project presentations next week
• 15 min presentation + 5 min Q&A = 20 min per team

• Three teams will present on Tue, May 28
• The other three teams will present on Thu, May 30

• Presentation order will be decided on Thu, May 23
• Presentation should include a demonstration (Iive or recorded)
• All teams MUST submit their slides, code, and report by May 27

CSED415 – Spring 2024 3

Program Analysis for
Bug Finding

CSED415 – Spring 2024 4

Motivation

• Many bugs exist
• Some bugs are vulnerabilities that can be exploited by attackers

to compromise the system

CSED415 – Spring 2024 5

Bug

Vulnerability

If we eliminate bugs, we can prevent attacks

Motivation

• CVE (Common Vulnerability Enumeration)
• List of publicly disclosed security flaws
• Increasing every year

CSED415 – Spring 2024 6

0

5000

10000

15000

20000

25000

30000

35000

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

CVE per year

Increasing!

Question

• Can we build a system that automatically finds bugs?

CSED415 – Spring 2024 7

Bug-finding
system

Program
(Source or binary)

Bugs

Informal proof

• Define a function is_buggy
• Input: A program
• Output: True if the program has at least one bug, false if not

CSED415 – Spring 2024 8

def is_buggy(prog):
 # test the prog and return true or false

Informal proof

• Write a program buggy_prog

CSED415 – Spring 2024 9

buggy_prog.py
if __name__ == “__main__”:
 if is_buggy(“buggy_prog.py”):
 return
 else:
 corrupt_memory()
 launch_root_shell()

Self-contradictory! (similar to the case of anti-virus)

Back to the question..

• Can we build a system that automatically finds bugs?
• We have just proved that building a perfect bug-finding system is

impossible!

• We take various best-effort approaches for partial bug
identification
• Bounded model checking
• Static analysis
• Dynamic analysis
• …

CSED415 – Spring 2024 10

Definition of “partial”

• Soundness vs Completeness
• An algorithm is sound if every result it produces is in fact true

• If the algorithm says that X is a bug, then X is indeed a bug
• Guarantees that there is no false positive (misclassifying a non-bug as bug)

CSED415 – Spring 2024 11

All existing bugs (i.e., truth)

What the algorithm
identifies as bugs

Definition of “partial”

• Soundness vs Completeness
• An algorithm is complete if it can derive all truths

• If X is a bug, then the algorithm says X is a bug
• Guarantees that there is no false negative (missing a bug)

CSED415 – Spring 2024 12

What the algorithm identifies as bugs

All existing bugs (i.e., truth)

Perfect analysis

• Soundness vs Completeness
• Perfect algorithm is sound and complete

• Very challenging to achieve in practice

CSED415 – Spring 2024 13

All existing bugs (i.e., truth)
=

What the algorithm identifies as bugs

Metrics to evaluate a bug finding algorithm

• Precision, recall, and accuracy

CSED415 – Spring 2024 14

U (all code)

Actual bugs (truth)

Identified bugs (claim)

FP

TP FN

TN

• Precision: Quality of identification
= TP / (TP + FP)

• Recall: Quantity of identification
= TP / (FN + TP)

• Accuracy
= (TP + TN) / U

Static vs Dynamic analysis

• Static analysis:
• Analysis that is performed

without executing a program
• Examples:

• Decompilation
• Pointer analysis
• Symbolic execution (Next topic)

CSED415 – Spring 2024 15

• Dynamic analysis:
• Analysis that is performed

during program execution
• Examples:

• Fuzzing (Today’s topic)
• Concolic execution

Fuzzing

CSED415 – Spring 2024 16

Fuzzing

• Fuzzing (or fuzz-testing)
• An automated software testing technique that involves providing

invalid, unexpected, or random data as inputs to a program
• During this process, the program is monitored for any anomalous

behavior (crashes, hangs, memory leaks, …)
• Goal is to find as many bugs (and vulnerabilities) as possible

CSED415 – Spring 2024 17

History of fuzzing

• Experience of Barton Miller in 1990
• He was logged on to his workstation through a modem (dial-up line)
• Due to a storm there were a lot of line noise
• The noise kept generating spurious characters on the line
• Programs on the workstation kept crashing due to the junk characters
• He coined the term “fuzz” from the experience

CSED415 – Spring 2024 18

Early days of fuzzing

• Barton Miller, et al.,
“An Empirical Study of the Reliability of Unix Utilities”,
Communications of the ACM, 1990

CSED415 – Spring 2024 19

UNIX
program

0100
1011
1110

Randomly
generated input

OK (no error)

Crash (buggy)

Execution result

Fuzzing

Early days of fuzzing

• Effectiveness
• Tested 90 Unix utility programs

• awk, cat, cc, diff, emacs, grep, …
• The fuzzer crashed 36 utilities!

• Due to various bugs including unbounded pointer/array accesses, overflows,
race conditions, …
• Randomly generated inputs were strikingly effective in triggering the bugs

within poorly-written Unix programs of 1980s

CSED415 – Spring 2024 20

Experiment

• Let’s put Miller’s fuzzer to the test with a simple program
• Will check the result at the end of today’s lecture

CSED415 – Spring 2024 21

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

void bug(void) {
 printf("bug!\n");
 raise(SIGSEGV);
}

int main(void) {
 setvbuf(stdout, NULL, _IONBF, 0);
 setvbuf(stdin, NULL, _IONBF, 0);

char in[16];
 FILE *fp = fopen("/dev/stdin", "rb");
 fread(&in, 4, 1, fp);

 if (in[0] == '\xde') {
 if (in[1] == '\xad') {
 if (in[2] == '\xbe') {
 if (in[3] == '\xef') {
 bug();
 }
 }
 }
 }

 fclose(fp);
 return 0;
}

target.c

Experiment

• Let’s put Miller’s fuzzer to the test with a simple program
• Will check the result at the end of today’s lecture

CSED415 – Spring 2024 22

import os
import subprocess as sp

if __name__ == "__main__":
 trials = 0
 while True:
 _input = os.urandom(4)

 p = sp.Popen(["./target"], stdout=sp.PIPE, stdin=sp.PIPE, stderr=sp.PIPE)

 out, err = p.communicate(input=_input) # send _input to stdin and read stdout
 if b"bug!" in out:
 print(f"found in {trials} trials")
 print(f"Test input: {_input}")
 exit(0)

 print(trials)
 trials += 1

fuzz.py

Interpretation of Miller’s success

• Fuzzing is simple, yet effective
• Insight from the software bugs we covered
• Buffer overflow, control flow hijacking, authentication bypass,

malware, DoS, SQL injection, …
à Attacks are initiated from (unsanitized) user inputs
• Fuzzing is a way to “simulate” these user inputs

CSED415 – Spring 2024 23

Used by many security practitioners

Fuzzing in modern times

• Modern software have become very large and complex
• Chromium browser codebase has 28 million lines of code (LoC)
• Linux kernel comprises over 27 MLoC
• FFmpeg has 1.4 MLoC

• It is infeasible and inefficient to manually
analyze such large projects
• Imagine manually checking a program with

the control flow graph (CFG) displayed on the right
• Time consuming, error-prone, and hardly scalable

CSED415 – Spring 2024 24

Is fuzzing applicable to large and complex programs?

Evolution of fuzzing

• Types of fuzzing
• Blackbox, greybox, and whitebox fuzzing
• Mutation-based and generation-based fuzzing

CSED415 – Spring 2024 25

Blackbox to Greybox Fuzzing

CSED415 – Spring 2024 26

Overview of Black, grey, and whitebox fuzzing

• Generates random inputs
• Fuzzer has no knowledge of

the program internals
• The approach of Miller et al.
• Pros:

• Extremely fast
• Easy to use
• Scalable

• Cons:
• Poor effectiveness
• Poor code coverage

CSED415 – Spring 2024 27

• Fuzzer has perfect
knowledge of the program
internals

• Solves path constraints to
generate concrete inputs for
all program branches

• Pros:
• High code coverage

• Cons:
• Complex
• Slow
• Not scalable

• Relies on “lightweight”
instrumentation of the program
under test

• Fuzzer has some knowledge of
the program internals during
fuzzing
• Generates semi-random inputs

based on the knowledge

• Pros:
• Scalable
• Relatively fast
• Decent code coverage

Best of both worlds

Breakdown of fuzzing efficiency

• A typing monkey problem
• Given infinite amount of time, can a monkey, hitting keys at random

on a keyboard, finish a full sentence?

28

It was a bright cold day in
April, and the clocks were
striking thirteen.

The possibility is non-zero; the monkey will “almost surely” type any given sentence

However, it will take a huge amount of time

Breakdown of fuzzing efficiency

29

Seed Target system

0000
0000

Fuzzer

Test input

0010
0000

crash

Seed x = “LIFE”

Test input x = “LIFO” x = “5IFE” x = “L0VE”

x = “HEFE” x = “DOVE” x = “LIFF”

x = input()

if x[0] == ‘H’:
 if x[1] == ‘A’:
 if x[2] == ‘R’:
 if x[3] == ‘D’:
 crash()

Target

à P crash = !
"!"

Random mutation

• Blackbox fuzzing

• Greybox fuzzing with code coverage feedback

Recent breakthrough

30

Seed Target system

0000
0000

Coverage map
Feedback

ß bug

Fuzzer

Test input

0010
0100

crash

Feedback-guided
mutation

Breakdown of fuzzing efficiency

• A typing monkey problem (Greybox edition)
• Keep the character that is correct
• Restart typing from the next position

31

It was a bright cold day in
April, and the clocks were
striking thirteen.

Wait for the monkey to randomly type “k”
Move the cursor to the next position when “k” is pressed

Breakdown of fuzzing efficiency

• A typing monkey problem (Greybox edition)
• Keep the character that is correct
• Restart typing from the next position

32

It was a bright cold day in
April, and the clocks were
striking thirteen.

Repeat for the rest of the sentence

The possibility is dramatically increased

Coverage feedback leads to better exploration

33

x = input()

if x[0] == ‘H’:

 if x[1] == ‘A’:

 if x[2] == ‘R’:

 if x[3] == ‘D’:

 crash()

Seed x = “LIFE”Target

Test input x = “5IFE” x = “L0VE”

x = “LEFE”

à P crash = !
"!
	× !

#
= !

""#
> !

"$%
Get correct byte

Select right position

x = “LIFO”

x = “HEFE” New branch.
Interesting!

x = “HAVE” New branch.
Interesting!

x = “HEFE”New seed

Test input

x = “HAVE”New seed...

How to track code coverage?

• Instrumentation: Modifying a program to enable analysis
• For code coverage tracking, we want to record which branches of a

program has been executed
• We can instrument basic blocks

• Basic block (BB): A sequence of code representing one branch of a software

CSED415 – Spring 2024 34

How to track code coverage?

• Control flow graph (CFG) of the “HARD” example
• Consists of six basic blocks

CSED415 – Spring 2024 35

mov x, input
cmp x[0], ‘H’
jne BB#6

cmp x[1], ‘A’
jne BB#6

cmp x[2], ’R’
jne BB#6

BB#1

cmp x[3], ‘D’
jne BB#6

return 0call crash()

BB#2

BB#3

BB#4

BB#5 BB#6

How to track code coverage?

• Instrumentation for code coverage tracking

CSED415 – Spring 2024 36

push blk_id
call coverage()
mov x, input
cmp x[0], ‘H’
jne BB#6

push blk_id
call coverage()
cmp x[1], ‘A’
jne BB#6

push blk_id
call coverage()
cmp x[2], ’R’
jne BB#6

BB#1

push blk_id
call coverage()
cmp x[3], ‘D’
jne BB#6

push blk_id
call coverage()
return 0

push blk_id
call coverage()
call crash()

BB#2

BB#3

BB#4

BB#5 BB#6

blk_id: 0xaa

blk_id: 0xbb

blk_id: 0xcc

blk_id: 0xdd

blk_id: 0xee blk_id: 0xff

def coverage(blk_id):
 global prev_blk_id
 record(prev_blk_id, blk_id)

How to track code coverage?

• Instrumentation for code coverage tracking

CSED415 – Spring 2024 37

push blk_id
call coverage()
mov x, input
cmp x[0], ‘H’
jne BB#6

push blk_id
call coverage()
cmp x[1], ‘A’
jne BB#6

push blk_id
call coverage()
cmp x[2], ‘R’
jne BB#6

BB#1

push blk_id
call coverage()
cmp x[3], ‘D’
jne BB#6

push blk_id
call coverage()
return 0

push blk_id
call coverage()
call crash()

BB#2

BB#3

BB#4

BB#5 BB#6

blk_id: 0xaa

blk_id: 0xbb

blk_id: 0xcc

blk_id: 0xdd

blk_id: 0xee blk_id: 0xff

def coverage(blk_id):
 global prev_blk_id
 record(prev_blk_id, blk_id)

Input: HASH
Coverage map:
 (0xaa,0xbb)
 (0xbb,0xff)

Input: HANK
Coverage map:
 (0xaa,0xbb)
 (0xbb,0xff)

Input: HAND
Coverage map:
 (0xaa,0xbb)
 (0xbb,0xff)

Input: HARM
Coverage map:
 (0xaa,0xbb)
 (0xbb,0xff)
 (0xbb,0xcc)

New coverage found!

Feedback-driven greybox fuzzing is effective

38

libFuzzerAFL OSS-Fuzz

Discovered millions of crashes in complex software systems

Test Input Generation

CSED415 – Spring 2024 39

Mutation- vs Generation-based fuzzing

• Motivation: Randomly generated inputs are likely rejected by
the program under test
• e.g., When fuzzing a video player application, it is very unlikely that

one generates a vaild mp4 file at random

• Two methods for better input generation
• Mutation: Mutate a given seed to generate test inputs

• Seed: A valid mp4 file
• Generation: Generate test inputs from a model

• Model: Specification of mp4 file format

CSED415 – Spring 2024 40

Mutation

• Frequently used mutation operators
• Bit-flipping: Flip a randomly selected bit

• e.g., 0xdead (0b1101 1110 1010 1101) à 0xdeaf (0b1101 1110 1010 1111)
• Arithmetic operation: Select a byte and add/subtract a value
• Randomization: Select a byte and randomize the value
• Insertion and deletion: Add or remove bytes
• Splicing: Crossover two test inputs

• e.g., First half of input #1 + second half of input #2

CSED415 – Spring 2024 41

Generation

• Generate inputs that the program under test accepts
• A model describes the correct format
• e.g., a grammar spcifying the input format

• PNG input has header and size fields
• The header field must have the “magic number”

of PNG in order for the input to be accepted
by the parser

CSED415 – Spring 2024 42
PNG format

Bug Oracles

CSED415 – Spring 2024 43

Mutation-based greybox fuzzing overview

44

Seed Target system

0000
0000

Coverage map
Feedback

ß bug

Fuzzer

Test input

0010
0100

crash

What if the program is buggy
but does not crash?

A need for bug oracles

• What types of anomalous behavior do we want to find?
• Crashes, but not all vulnerabilities lead to crashes (e.g., Lab 01)
• Memory corruption: e.g., Use-After-Free (UAF) vulnerabilities
• Hang: Program does not finish within a timeout period
• Memory leaks, race conditions, specification violation, …

• A bug oracle detects any interesting behavior
occurred during the execution of a program
with the test input

CSED415 – Spring 2024 45

Bug oracles in practice

• AddressSanitizer (ASan)
• Detects buffer overflows and use-after-free

• ThreadSanitizer (TSan)
• Detects data races

• MemorySanitizer (MSan)
• Detects uses of uninitialized memory

CSED415 – Spring 2024 46

Address sanitizer

• Implemented as compiler module (clang, gcc)
• Instruments all load and store instructions
• Inserts redzones around stack and global variables

CSED415 – Spring 2024 47

...

buf

ebp

ret

...

...

redzone1

buf

redzone2

ebp

ret

...

Original program Sanitized program

Address sanitizer

• Runtime module checks whether redzones are touched when
buf is read or something is written to buf

CSED415 – Spring 2024 48

...

buf

ebp

ret

...

...

redzone1

buf

redzone2

ebp

ret

...

Original program Sanitized program

Overflow contaminates redzone2
ASan reports buffer overflow error

Underflow contaminates redzone1
ASan reports buffer overflow error

Address sanitizer in action

• Without ASan

CSED415 – Spring 2024 49

// obo.c
#include <stdio.h>
int numbers[] = { 1, 2, 3 };
int main() { /* classic off-by-one error. */
 printf("The 4th number in my array is: %i\n", numbers[4]);
}

$ gcc obo.c –o obo

$./obo
The 4th number in my array is: 0

The bug is missed

Address sanitizer in action

• With ASan

CSED415 – Spring 2024 50

// obo.c
#include <stdio.h>
int numbers[] = { 1, 2, 3 };
int main() { /* classic off-by-one error. */
 printf("The 4th number in my array is: %i\n", numbers[4]);
}

$ gcc obo.c –fsanitize=address –o obo_asan

$./obo_asan
===
==365994==ERROR: AddressSanitizer: global-buffer-overflow on address 0x55aceaed5030 at pc 0x55aceaed2223 bp
0x7ffe8cfc2c20 sp 0x7ffe8cfc2c10
READ of size 4 at 0x55aceaed5030 thread T0
 #0 0x55aceaed2222 in main (/home/seulbae/test/asan/obo_asan+0x1222)
 #1 0x7fa6faf1ed8f in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58
 #2 0x7fa6faf1ee3f in __libc_start_main_impl ../csu/libc-start.c:392
 #3 0x55aceaed2124 in _start (/home/seulbae/test/asan/obo_asan+0x1124)

0x55aceaed5030 is located 4 bytes to the right of global variable 'numbers' defined in 'obo.c:8:5' (0x55aceaed5020)
of size 12
SUMMARY: AddressSanitizer: global-buffer-overflow (/home/seulbae/test/asan/obo_asan+0x1222) in main
Shadow bytes around the buggy address:
 0x0ab61d5d29f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x0ab61d5d2a00: 00 00 00 00 00 04[f9]f9 f9 f9 f9 f9 00 00 00 00
 0x0ab61d5d2a10: f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9

Final picture

51

Seed Instrumented
program

0000
0000

Coverage map
ß bug

Test
input

0010
0100

Bug
oracle

BugsInput
mutator

A coverage-based mutational greybox fuzzer

Coverage
monitor

CSED415 – Spring 2024

Fuzzing results?

• How many trials were required to find the bug with dumb
fuzzing?
• Dumb: Random mutation, no coverage feedback
• Theoretically: Random 4 bytes being identical to “\xde\xad\xbe\xef”
 à 2$" ≈ 4.2 billion trials
• Experimentally:

CSED415 – Spring 2024 52

vs AFL

• AFL: The most widely used coverage-guided mutation-based
fuzzer
• Instrumentation for code coverage using AFL’s custom complier

• Prepare a seed input

• Run fuzzer

CSED415 – Spring 2024 53

$ afl-cc target.c –O0 –o target_afl

$ rm –rf in out
$ mkdir in
$ echo -ne “\xff\xff\xff\xff” > in/seed

$ afl-fuzz -i in -o out -- ./target_afl

Questions

• Is fuzzing sound?
• Is fuzzing complete?

CSED415 – Spring 2024 54

Questions?

CSED415 – Spring 2024 55

