Lec 26: Symbolic Execution

CSED415: Computer Security
Spring 2024

Seulbae Kim
POSTECH

Administrivia

rPOSTRPCH

* All labs completed

* Grace period for Lab 5 ends on May 26

* Labs will be graded this weekend and be reviewed next week after
project presentations

* Final exam will be on June 4
* Note: June 6 is a national holiday

CSEDA415 — Spring 2024 2

Administrivia
* Project presentations next week

* 15 min presentation + b min Q&A =20 min per team
* Three teams will present on Tue, May 28
* The other three teams will present on Thu, May 30

* Presentation order will be decided today
* Presentation should include a demonstration (live or recorded)
e All teams MUST submit their slides, code, and report by May 27

CSEDA415 — Spring 2024 3

Presentation order

POSTEREPLCH
import random
° May 28 import time
o 7/ . .
: random.seed(time.time())
o 7 N = 10 # to be selected in class
o ? teams = [

"Agustina & Megan",

* May 30 nysw®

||_T_|_9\|:|| ,
o 7 "h@ckerz",
"qlw2e3r4”,
° 7 "Poulpy"
o 7]

for 1 in range(N):
random.shuffle(teams)
print(teams)

CSEDA415 — Spring 2024 4

Program Analysis for
Bug Finding — Part 2

CCCCCCC — Spring 2024 rPOSTEPLCH

Motivation

rPOSTERCH

* Fuzzing is sound if its bug oracle is precise
 Bugs detected by a fuzzer are indeed bugs (no FP)
* However, it is far from being complete (many FN)

Is there an approach that aims to be complete?
(i.e., that does not miss any bug)

CSEDA415 — Spring 2024 6

Static vs Dynamic analysis

rPOSTERCH

* Static analysis: * Dynamic analysis:
* Analysis that is performed * Analysis that is performed
without executing a program during program execution
* Examples: * Examples:
 Decompilation * Fuzzing (Last topic)
* Pointer analysis * Concolic execution

* Symbolic execution (Today’s topic)

CSEDA415 — Spring 2024 7

Symbolic Execution

CCCCCCC — Spring 2024 rPOSTEPLCH

Concrete (dynamic) vs Symbolic execution

rPOSTERCH

* Consider the following simple program

if (input == Oxdeadbeef) {
bug() ;

} else {
no_bug();

}

* |[n our last in-class experiment, dumb fuzzing concretely executed
the program with randomly generated inputs for over 4 million times
but still failed to reach the bug

Can we do any better?

CSEDA415 — Spring 2024 9

Concrete (dynamic) vs Symbolic execution

* We humans intuitively know the input that is required to

trigger the bug by just looking at the code

* How? We can easily solve the path constraint for the if branch that
leads to the bug!

if (input == Oxdeadbeef) {
bug() ;

} else {
no_bug();

}

Can a computer do the same?

CSEDA415 — Spring 2024 10

Concrete (dynamic) vs Symbolic execution
* Concrete execution: Run a program with a concrete input

 Concrete input is a fixed value
* Program behavior (i.e., branches taken) is determined by the input

* Symbolic execution: Run a program with a symbolic input

* Program inputs are represented by symbols
* A symbol represents any possible value
* We can reason about possible program behaviors using the symbols

* Goals:
* Explore all execution paths of a program
* Obtain concrete test input leading to each the path

CSEDA415 — Spring 2024 1

Symbolic execution - How

rPOSTERCH

* Symbolic executor maintains an internal state (st, o,)
* st: The next statement to evaluate
* 0. Symbolic store
* 1. Path constraints

* Depending on st, symbolic execution proceeds as follows:
e st is an assignment (e.g., var = e):

* 0 is updated by associating LHS (var) with a new symbolic expression e, obtained
by evaluating RHS (e) symbolically

e st is an if statement (e.q., if e, then path, else path,):
* Program is forked by creating two states with path constraints T A e and T A —e,

e st is an assertion (e.g., assert(e)):
* The validity of e is checked using path constraints

CSEDA415 — Spring 2024 12

Example of symbolic execution

void buggy(int x, int y) {

int 1 = 10;
int z =y * 2;
if (z == x) {

if (x >=vy + 10) {
z=2z/ (L -10); // divzero
}
}
}

CSEDA415 — Spring 2024

o:. Symbolic store

rPOSTERCH

1. Path constraints

13

Example of symbolic execution

rPOSTECH
o:. Symbolic store . Path constraints
st =) void buggy(int x, int y) { X = Xg true
int 1 = 10;
int z =y % 2; Y=)Ys (branch always taken)
if (z == x) {

if (x >=y + 10) { (Notation: var — sym)

z=2z/ (L -10); // divzero
}
}
}

x and y are symbolic values

CSEDA415 — Spring 2024 14

Example of symbolic execution

rPOSTECH
o:. Symbolic store . Path constraints
void buggy(int x, int y) { X — X true
st mmp int 1 = 10;
int z =y * 2; Y=
if (z == x) {

if (x >=vy + 10) {
z=2z/ (L -10); // divzero
}
}
}

1is a concrete value

CSEDA415 — Spring 2024 15

Example of symbolic execution

rPOSTECH
o:. Symbolic store . Path constraints
void buggy(int x, int y) { X — X true
int 1 = 10;
st mm) int z=y % 2; Yy =Ys
if (z == x) { Z > 2%y

if (x >=vy + 10) {
z=2z/ (1 -10); // divzero
}
}
}

st is an assignment

o is updated by associating LHS (z)
with a new symbolic expression e
obtained by evaluating RHS (y*2)
symbolically

CSEDA415 — Spring 2024 16

Example of symbolic execution

rPOSTE2LCH
o:. Symbolic store . Path constraints
void buggy(int x, int y) { X = Xg X = 2 % Vg
int 1 = 10; 1 if taken __—»
int z =y * 2; path Yy Vs
st = if (z == x) { Z > 2%y
if (x >=y + 1
z=2z/ (1L -1
}
}
}
st is an if statement o. Symbolic store . Path constraints
Program is forked by creating two states X = Xg Xs F 2 * Vg
with path constraints T A e and T A —eg
Yy —=Ys
Here, e, is the symbolic evaluation of z == x Z—>2*Yys

CSEDA415 — Spring 2024 17

Example of symbolic execution

rPOSTECH
Path 1
o:. Symbolic store . Path constraints
void buggy(int x, int y) { X = Xg X = 2 % Vg
int 1 = 10;
int z =y * 2; Y=
if (z == x) { Z > 2%y
if (x >=vy + 10) {
z=2z/ (1 -10); // divzero
}
st wmmp }
}
st hits a dead end if path 2 is followed
Nothing left to do for path 2. Final states
Go back and further explore path 1. Path 2
o. X > Xg
Yy =Ys
Z = 2%Ys
T Xg F 2% Y

CSEDA415 — Spring 2024 18

Example of symbolic execution

rPOSTERCH

Path 1-1
: : : 0. X = Xg
void buggy(int x, int y) { Yy = Ys
int 1 = 10; Z > 2%y
int z =y * 2; T (xg= 2 *y5) N (xs= ys + 10)
if (z == x) {
St m—)p if (x > =y + 10) { i
2=2/ (i- 10); Path 1-2
} o. X = Xg
Y =JYs
} Z 2%y
} T (x5 = 2% y5) A (xs< ys + 10)
st is an if statement
Program is forked by creating two states Final states
with path constraints T A e and T A —eg Path 2
. . . 0. X 2 Xg
Here, e is the symbolic evaluation of x>=y+10 y = Ve
Z = 2%Ys
T Xs # 2% s

CSEDA415 — Spring 2024 19

Example of symbolic execution

rPOSTERCH

Path 1-1
0. X = Xg
void buggy(int x, int y) { Yy > Ys
int 1 = 10; Z22%Ys
int z =y * 2; T (xg= 2 *y5) N (xs= ys + 10)
if (z == x) {
if (x >=y + 10) {
z=2z/ (L -10); // divzero
st =) }
}
}
st hits a dead end if path 1-2 is followed
Nothing left to do for path 1-2. Final states
Go back and further explore path 1-1. Path 2 Path 1-2
0. X > Xg 0. X > Xg
Y= Ys Yy =Ys
Z—>2%*Yys Z > 2%y
M Xs #F 2% Ys || T (x5 = 2% Yg) A (x5< Y5 + 10)

CSEDA415 — Spring 2024 20

Example of symbolic execution

void buggy(int x, int y) {

int 1 = 10;
int z =y * 2;
if (z == x) {
if (x >=vy + 10) {
st =) z=2z/ (L -10); // divzero
}
}

}

st is an assignment

o is updated by associating LHS (z)
with a new symbolic expression e
obtained by evaluating RHS (z/(1-10))
symbolically

Note: Here, 1 is concrete

CSEDA415 — Spring 2024

Path 1-1
0. X = X

Yy = Ys
z—2xys/0

T (xs= 2 % ¥5) A (xs= ys + 10)

Final states
Path 2 Path 1-2
. X = X . X = X
Yy =Ys Yy =Ys
Z—>2%*Yys Z > 2%y
T Xs F 2% Ys [[(g = 2 % y5) A (xs< y5 + 10)

rPOSTERCH

21

Example of symbolic execution

void buggy(int x, int y) {

int 1 = 10;
int z =y * 2;
if (z == x) {

if (x >=vy + 10) {
z=2z/ (L -10); // divzero
}
}
st wmmp }

All program paths have been explored

Final states
Path 1-1

g. X = Xg
Y2 Ys

rPOSTERCH

Potential div-by-zero error

z—>2xys /0
T (xs= 2 * Ys) A (xs= ys + 10)

Path 1-2

ol X > X
Y = Ys
Z—>2xys

T (xs= 2 * Y5) A (xs< ys + 10)

Path 2

. X > X
Yy = Ys
Z > 2%
T X #F 2% Y

» is detected! If i is satisfiable,
this is an actual bug

Next step: Solving m to obtain concrete test inputs for each path

CSEDA415 — Spring 2024

22

Example of symbolic execution

rPOSTECH
Solving T Concrete
Path 1-1 input
g ;C] - §S Find x, and y, that satisfy v =20
z—>25*ys/0 m) o x. = 2=x7y,and ‘ys;lo \
T (xg= 2 * y5) A (xs= s + 10) * X =2Ys+10 ’ Verification?
void buggy(int x, int y) {
Path 1-2 int 1 = 10;
. int z=v *x 2:
Ay Find x, and y; that satisfy . =0 o by o
z— 2%y m) - x5 =2x*Ys;and —) by = —) if (x >=y + 10) {
T (xg= 2 * yo) A (x,< ys + 10) e xs <y, +10 s }z=z/(1— 10);
}
Path 2 }
0. X = X
Yy =Ys Find x, and y; that satisfy xs =1 ’
Z=2%Ys ‘* Xs F 2 %Y - Ys =0
T X5 # 2 *Ys

Program is completely tested; all paths and corresponding inputs are discovered

CSEDA415 — Spring 2024 23

CSEDA415 — Spring 2024

SMT Solver

rPoOsSTERECH

24

Constraint solving

rPOSTERCH

* We manually solved the path constraints

* To automate symbolic execution, the constraints should be
solved by a machine (computer)

e There exist “solvers” for this task

CSEDA415 — Spring 2024 25

Satisfiability

» Satisfiability (SAT) is the problem of determining if there exists
an assignment of values to variables that makes a given
Boolean formula true
» Example formula: (AV =B) A (B V ()

* A, B, and C are Boolean variables
* Can be assigned to either true or false

e Satisfiability assignment:
* A =true, B = false, C = true (one of the viable solutions)

CSEDA415 — Spring 2024 26

Satisfiability Modulo Theories (SMT)

rPOSTERCH

* SMT extends the SAT problem to more complex domains
* Including theorems for arithmetic, bit-vectors, and arrays

* SMT solvers determine the satisfiability of logical formulas
« Example formula: (x =2*y) A(x =y + 10)
» Satisfiable assignment:
e x = 20, y = 10 (one of the viable solutions)

For symbolic execution, we can utilize existing SMT solvers

CSEDA415 — Spring 2024 27

Example: Z3 solver

rPOSTERCH

* A widely-used SMT solver developed by Microsoft Research

* Using Z3 (with its Python binding)
* |nstallation
$ pip3 install z3-solver

* Usage
sat.py # unsat.py
from z3 import * from z3 import *
x = Int(“x") x = Int(“x")
y — Int(lly") y — Int(lly")
solve(x == 2 * y, x >=vy + 10) solve(x == 2 *y, x =2 * y)
$ python3 sat.py $ python3 unsat.py

[y = 10, x = 20] no solution

CSEDA415 — Spring 2024 28

KLEE: A Symbolic
Execution Engine

CCCCCCC — Spring 2024 rPOSTEPLCH

KLEE (OSDI ’08)

rPOSTERCH

* Cristian Cadar, et al.,
“KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs”,
OSDI, 2008

* One of the most popular open-source symbolic execution engines

CSEDA415 — Spring 2024 30

Using KLEE

rPOSTERCH

* |Installation
* Recommended: Docker with KLEE pre-installed

$ docker pull klee/klee:3.0
$ docker run --rm -ti --ulimit='stack=-1:-1' klee/klee:3.0
klee@[container_id]:~$

CSEDA415 — Spring 2024 31

Using KLEE

* Target program: Example from the previous lecture

CSEDA415 — Spring 2024

target.c

#include <signal.h>
#include <stdio.h>

#include <stdlib.h>
#include <unistd.h>

void bug(void) {
printf("bug!\n");
raise(SIGSEGV);

}

int main(voild) {
setvbuf(stdout, NULL, _IONBF, 0);
setvbuf(stdin, NULL, _IONBF, 0);

char in[16];
FILE *fp = fopen("/dev/stdin", "rb");
fread(&in, 4, 1, fp);

if (in[0] == '\xde') {
if (in[1] == '"\xad') {
if (in[2] == "\xbe') {
if (in[3] == "\xef') {
bug();
}
}
}
fclose(fp);
return 0;

rPOSTERCH

32

Using KLEE

* Specify symbolic inputs
* We want to find a 4-byte string that triggers the bug

CSEDA415 — Spring 2024

target.c

#include <signal.h>
#include <stdio.h>

#include <stdlib.h>
#include <unistd.h>
#include <assert.h>

void bug(void) {
printf("bug!\n");
// raise(SIGSEGV);
assert(0);

}

int main(voild) {
setvbuf(stdout, NULL, _IONBF, 0);
setvbuf(stdin, NULL, _IONBF, 0);

char in[4];

// FILE *fp = fopen("/dev/stdin", "rb");
// fread(&in, 4, 1, fp);
klee_make_symbolic(in, 4, “in");

if (in[0] == '\xde') {
if (in[1] == "\xad') {
if (in[2] == '"\xbe') {
if (in[3] == '\xef') {
bug();
}
}
}
}
// fclose(fp);
return 0;

rPOSTERCH

33

Using KLEE

* Compile target and run KLEE

klee@[container_id]:~$ clang -I klee_src/include -emit-1lvm -g -c target.c

klee@[container_id]:~$ klee target.bc
KLEE: output directory is "/home/klee/klee-out-0"
KLEE:
KLEE:
KLEE:

KLEE:

r:
bug!

KLEE:
KLEE:

KLEE:
KLEE:
KLEE:
KLEE:

Using STP solver backend
SAT solver: MiniSat

WARNING:
WARNING ONCE:

ERROR: target.c:9: ASSERTION FAIL: 0
NOTE: now ignoring this error at this location
done:
done:
done:
done:

CSEDA415 — Spring 2024

total instructions = 41

completed paths

partially completed paths

generated tests

=5

undefined reference to function:
calling external: printf(94191341347320, 94191341347184) at target.c:19 7

1

rPOSTERCH

34

Using KLEE

rPOSTERCH

* Check KLEE-generated test cases

klee@[container_id]:~$ cd klee-last
klee@9048d3ab7cf9:~/klee-last$ ls | grep ktest
test000001.ktest test000002.ktest testOOO003.ktest test000004.ktest test000005.ktest

klee@[container id]:~/klee-last$ ktest-tool test000005.ktest

ktest file : 'test000005.ktest'

args : ['target.bc']

num objects: 1

object 0: name: 'in' The input we marked symbolic

object 0: size: 4

object 0: data: b'\xde\xad\xbe\xef' Exact value of the symbolic input for the path

klee@[container_id]:~/klee-last$ cat test000005.assert.err
Error: ASSERTION FAIL: O
File: target.c

Line: 9

assembly.ll line: 17
State: 1

Stack:

Detected error and the stack trace

#000000017 in bug() at target.c:9
#100000065 in main() at target.c:23

CSEDA415 — Spring 2024 35

Limitations of
Symbolic Execution

CCCCCCC — Spring 2024 rPOSTEPLCH

Practical issues of symbolic execution

rPOSTERCH

* Loops and recursions
e | eads to infinite execution tree

* Path explosion
* Number of paths exponentially increase

* SMT solver limitations
« Complex path constraints cannot be solved

* Environment modeling
e System calls, library calls, file operations, ...

CSEDA415 — Spring 2024 37

Practical issues of symbolic execution

rPOSTECH
* Loops and recursions
* Leads to infinite execution tree
void loopy(int x, int y) {

int L = 0;

while (1 < 500) { As the loop repeats, path constraint becomes massive, e.g.,
if (x + 1 >10 x y) {
}
1++;

}

}

CSEDA415 — Spring 2024 38

Practical issues of symbolic execution

rPOSTERCH

* Path explosion

* Symbolic executor forks the program under test at every branch
e Results in two copies of the execution states per branch

* Number of paths exponentially increase due to nested branches

CSEDA415 — Spring 2024 39

Practical issues of symbolic execution

rPOSTERCH

* Environment modeling

* How to deal with external calls?
e.g., system calls, library calls, file operations, ...

void read_pixels(int width, int height) { - assume the parameters are symbolic
char pixel_buf[1024];

int fd = (“/tmp/image.png”, O_RDWR);
ssize_t num_bytes = (fd, pixel_buf, width + height);
if (num_bytes == -1) {
assert(0);
}
}

We cannot symbolically represent num_bytes in terms of width and height
as it depends on the actual size of the image file

No path constraint can be derived for the if branch

CSEDA415 — Spring 2024 40

Practical issues of symbolic execution
* SMT solver limitations

* Solvers are not omni-potent

* Some path constraints require long time to be solved

« Complex path constraints cannot be solved at all

Combined with the path explosion problem, a complete analysis of
a large and complex program is often infeasible

CSEDA415 — Spring 2024 41

Practical Solutions

CCCCCCC — Spring 2024 rPOSTEPLCH

Concolic execution

rPOSTERCH

* Conc = Concrete + Symb
* Also called dynamic symbolic execution

* Program is executed simultaneously with both concrete and symbolic
INputs

* Concrete inputs help dealing with external calls (e.g., read file)
* Symbolic inputs help exploring branches

CSEDA415 — Spring 2024 43

Concolic execution

rPOSTECH
 Conc = Concrete + Symb

void read_pixels(int , int) {

char pixel_buf[1024];

int fd = (“/tmp/image.png”, O_RDWR);

ssize_t num_bytes = (fd, pixel_buf, width + height);

if (num_bytes == -1) {

assert(0);

s

s

» Concrete execution reveals the file size of /tmp/image.png, i.e,actual_sz
* |t also reveals the semantics of read syscall:

« 1f (width + height) >= actual_sz, then num_bytes = actual_sz
- num_bytes is concrete, therefore the if branch is not taken
« else, num_bytes = width + height
- num_bytes is symbolic, therefore symbolic execution can solve the path constraint of the if branch

CSEDA415 — Spring 2024 44

Hybrid fuzzing
* |dea: Use symbolic execution for difficult branches and fuzzing
to resolve path explosion
* Run a fuzzer until code coverage saturates at one point
* Run symbolic execution to find the input to get past the branch
* Use that concrete input as seed and continue fuzzing

CSEDA415 — Spring 2024 45

Hybrid fuzzing

rPOSTERCH

* |[dea: Use symbolic execution for difficult branches and fuzzing
to resolve path explosion

int x; // user input
char buf[32]; // user input

Fuzzing coverage mm) if (x == Oxdeadbeef) { // hard for fuzzing 2%chance to randomly generate correct x
saturates here int count = 0;

Symbolic executor engages for (int i = 0; 1 < 32; 1++) {
and finds x = Oxdeadbeef if (buf[i] >= ‘a’) {

count++;
}
}
Fuzzer mutates buf =) {f (count >= 8) { // hard for symbolic execution
and easily enters /* .o */ No. of feasible paths = 232 (two for each element of buf[32))
the branch ¥ - Path explosion!

}

CSEDA415 — Spring 2024 46

Summary

rPOSTERCH

* Bug finding is crucial for securing computer systems

* Manual analysis can be daunting as modern systems have become
too large and complex

* Greybox fuzzing aims to provide soundness
|t finds real bugs, but misses existing bugs

* Symbolic execution aims to provide completeness
* In theory, it finds all bugs by exploring all program paths
* However, complete analysis is impossible due to practical limitations

* Both techniques are widely used in practice

* Various combinations of the two are being proposed to achieve
soundness and completeness at the same time

CSEDA415 — Spring 2024 47

Questions?

CCCCCCC — Spring 2024 rPOSTEPLCH

