
Seulbae Kim

CSED415: Computer Security
Spring 2025

Lec 04: On Trusting Trust

2CSED415 – Spring 2025

Administrivia

• Welcome, survivors!
• 35 students

• Please form six teams for the team project, each with 5-7
students
• Begin searching for teammates now!

• You can utilize “Teammate Finding” board on PLMS
• Finalize your teams by next week (March 7th)

• Refer to PLMS assignment for team info submission instructions

• Lab 01 is due tomorrow at midnight

3CSED415 – Spring 2025

Administrivia

• Office hours
• TA’s online office hours

• Mondays, 7-8 PM
• Thursdays, 7-8 PM

• My on-site office hours
• Thursdays, 1-2 PM in my office (Room 434, PIAI Building)

4CSED415 – Spring 2025

Recap

• Defensive programming and secure coding guidelines
• Buggy code is the root of evil

• Do you remember any of the secure coding rules?
• Have you tried reviewing your own code?

• From Lecture 03:
• Conformance with the secure coding standard is necessary

(but not sufficient) for reliable and secure software
• Today’s topic: Why is it not sufficient?

5CSED415 – Spring 2025

Source code vs Binary

• Q) Given both the source code and the binary of a program,
which should you analyze to determine whether it is safe to
execute the program?

6CSED415 – Spring 2025

Source code vs Binary

• Reasons to analyze the source code
• Clarity: Source code is easier to read, understand, and review
• Availability of context: It often contains comments, descriptive

variable names, and meaningful structure
• Fixability: Vulnerabilities found at the source level are typically easier

to correct directly in the code

7CSED415 – Spring 2025

Source code vs Binary

• So, why bother with binaries??
• Despite the advantages of source code analysis, security experts

often analyze binaries to discover hidden vulnerabilities
• Reason: Today’s topic

8CSED415 – Spring 2025

Key question

• You have the complete source code of a program. Can you
find all potential vulnerabilities in this program just by
analyzing the given source code?

CSED415 – Spring 2025

NO WAY!

Ken Thompson
“Reflections on Trusting Trust”
Communications of the ACM, 1984

CSED415 – Spring 2025

On Trusting Trust

11CSED415 – Spring 2025

Compiler 101

Compiler

safe.c safe.exe

12CSED415 – Spring 2025

Compiler 101

Preprocessor Compiler Assembler Linker

safe.c safe.exe

safe.i safe.s safe.o

13CSED415 – Spring 2025

Compiler 101

Preprocessor Compiler Assembler Linker

safe.c safe.exe

safe.i safe.s safe.o

• Removes comments
• Includes code from headers
• Replaces all macros

gcc -E

14CSED415 – Spring 2025

Compiler 101

Preprocessor Compiler Assembler Linker

safe.c safe.exe

safe.i safe.s safe.o

push ebp
mov ebp, esp
sub esp, 0x18
…

• Generates IR (intermediate representation) code
• Assembly code
• Last human-readable format!

gcc -S

15CSED415 – Spring 2025

Compiler 101

Preprocessor Compiler Assembler Linker

safe.c safe.exe

safe.i safe.s safe.o

0101000010010
0010110011011
0110010110001
...

• Transforms IR code into object code
• Machine language (binary)

gcc -c

16CSED415 – Spring 2025

Compiler 101

Preprocessor Compiler Assembler Linker

safe.c safe.exe

safe.i safe.s safe.o

• Puts together all
machine code
into an executable

17CSED415 – Spring 2025

Question: Can we trust compilers?

Compiler

safe.c safe.exeWould a compiler generate a binary that
is functionally equivalent to the input

source code?

18CSED415 – Spring 2025

Chasing down a rabbit hole

• To ensure a program is safe, we inspect its source code 😎
• But that code is compiled by another program (a compiler)
• So we inspect the compiler’s source code 🤨
• But that compiler was itself compiled by yet another compiler..
• … and on it goes, infinitely 🤯

19CSED415 – Spring 2025

Reflections on Trusting Trust

• Ken Thompson (and Dennis Ritchie)
• Received the Turing Award in 1983 for their work on Unix Operating

System
• In his acceptance speech, Thompson demonstrated how to build a

backdoored compiler without leaving a trace in its source code

CSED415 – Spring 2025

“Reflections on Trusting Trust”, Communications of the ACM, 1984
• https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
• Full text also available on PLMS

https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf

21CSED415 – Spring 2025

Thompson Compiler – Stage 1

• Stage 1: Understanding the concept of “quine”
• Quine is a self-reproducing code
• A quine in Python 3:

• A quine in C
c = 'c = %r; print(c %% c)'; print(c % c)

char*f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";main(){printf(f
,34,f,34,10);}

22CSED415 – Spring 2025

Thompson Compiler – Stage 1

• Thompson’s quine in the paper:

// print the array initialization

// prints the rest (comments
 and the main function)

23CSED415 – Spring 2025

Thompson Compiler – Stage 2

• Stage 2: Understanding the concept of “training” a compiler

comp v1

[Compiler v1’s code] compiler

c = next();

if(c == '\\') {
 c = next();
 if(c == 'n')
 return('\n');
}

• Compiler v1 knows how to parse \n (newline character):
• If it reads '\', followed by 'n', it returns char '\n'

• It does not know how to parse \v (vertical tab) yet

24CSED415 – Spring 2025

Thompson Compiler – Stage 2

• Stage 2: Understanding the concept of “training” a compiler

comp v1

compiler[Compiler v2’s code]

c = next();

if(c == '\\') {
 c = next();
 if(c == 'n')
 return('\n');
 if(c == 'v')
 return('\v');
}

• We can add a parsing logic for \v in the updated version (compiler v2)
• If it reads '\', followed by 'v', it returns char '\v'

25CSED415 – Spring 2025

Thompson Compiler – Stage 2

• Stage 2: Understanding the concept of “training” a compiler

comp v1

compiler[Compiler v2’s code]

c = next();

if(c == '\\') {
 c = next();
 if(c == 'n')
 return('\n');
 if(c == 'v')
 return('\v');
}

• We can add a parsing logic for \v in the updated version (compiler v2)
• If it reads '\', followed by 'v', it returns char '\v'

Parse error: '\v' unknown

Result

When we try to compile comp v2’s code using comp v1,
it fails because comp v1 cannot parse the \v in the new code

26CSED415 – Spring 2025

Thompson Compiler – Stage 2

• Stage 2: Understanding the concept of “training” a compiler

comp v1

compiler[Compiler v2x’s code]

c = next();

if(c == '\\') {
 c = next();
 if(c == 'n')
 return('\n');
 if(c == 'v')
 return(11);
}

• We update the compiler code to return 11 instead of \v
• 11 is the ASCII code for char \v

Result

27CSED415 – Spring 2025

Thompson Compiler – Stage 2

• Stage 2: Understanding the concept of “training” a compiler

comp v1

compiler

c = next();

if(c == '\\') {
 c = next();
 if(c == 'n')
 return('\n');
 if(c == 'v')
 return(11);
}

Result

comp v2

It has “learned” what \v means

comp v1 is now able to compile the code and produce comp v2

[Compiler v2x’s code]

• We update the compiler code to return 11 instead of \v
• 11 is the ASCII code for char \v

28CSED415 – Spring 2025

Thompson Compiler – Stage 2

• Stage 2: Understanding the concept of “training” a compiler

comp v2

compiler[Compiler v2’s code]

• NOTE: The information it has learned, i.e., '\v' == 11, no longer appears in the code!
• It is “baked” into the compiler binary

Result

comp v2

Now that comp v2 is trained, it can compile the original v2 code
and self-reproduce itself

c = next();

if(c == '\\') {
 c = next();
 if(c == 'n')
 return('\n');
 if(c == 'v')
 return('\v');
}

29CSED415 – Spring 2025

Thompson Compiler – Stage 3

• Stage 3: Injecting a backdoor

comp

login.c

login
binary

(checks if username and password matches)

[Original compiler code]

void compile(char *progname)
{
 /* ... */
}

30CSED415 – Spring 2025

Thompson Compiler – Stage 3

• Stage 3: Injecting a backdoor when compiling login.c

comp

login.c

login
binary

(checks if username and password matches)

comp v2

[Compiler v2’s code]
void compile(char *progname)
{
 /* ... */
 if(match(progname, "login")) {
 compile("backdoored_login");
 return;
 }
}

à A compiler that produces
 a backdoored login binary
 when asked to compile login

We can use the original compiler
to compile comp v2’s code to produce
comp v2

31CSED415 – Spring 2025

Thompson Compiler – Stage 3

• Stage 3: Injecting a backdoor when compiling login.c

comp

login.c

login
binary

(checks if username and password matches)

comp v2

[Compiler v2’s code]
void compile(char *progname)
{
 /* ... */
 if(match(progname, "login")) {
 compile("backdoored_login");
 return;
 }
}

à A compiler that produces
 a backdoored login binary
 when asked to compile login

backdoored
login binary

(e.g., allows login if password
 is "B4CKd00r")

If we compile login.c with comp v2,
it will produce a backdoored login binary

32CSED415 – Spring 2025

Thompson Compiler – Stage 3

• Stage 3: Injecting a backdoor when compiling login.c

comp

login.c

login
binary

(checks if username and password matches)

comp v2

[Compiler v2’s code]
void compile(char *progname)
{
 /* ... */
 if(match(progname, "login")) {
 compile("backdoored_login");
 return;
 }
}

à A compiler that produces
 a backdoored login binary
 when asked to compile login

backdoored
login binary

(e.g., allows login if password
 is "B4CKd00r")

Problem:
The backdoor insertion logic in
compiler v2 can be easily
detected by examining its code

33CSED415 – Spring 2025

Thompson Compiler – Stage 3

• Stage 3: Injecting a backdoor when compiling login.c
login.c

login
binary

comp v2

à Backdoor insertion logic
 has been removed

backdoored
login binary

[Original compiler code]

void compile(char *progname)
{
 /* ... */
}

comp

If we remove the logic from the source code
to bypass detection, we can no longer
re-compile the compiler code
(The backdoor insertion logic is lost)

34CSED415 – Spring 2025

Thompson Compiler – Stage 3

• Stage 3: Covertly injecting a backdoor inserting code
login.c

comp v2

[Compiler v3’s code]
void compile(char *progname)
{
 /* ... */
 if(match(progname, "login")) {
 compile("backdoored_login");
 return;
 }
 if(match(progname, "comp")) {
 compile("comp v3");
 return;
 }
}

à Produces a backdoor-inserting compiler
 instead of a normal compiler

backdoored
login binary

35CSED415 – Spring 2025

Thompson Compiler – Stage 3

• Stage 3: Covertly injecting a backdoor inserting code
login.c

comp v2

backdoored
login binary

comp v3

We can compile comp v3 using comp v2

[Compiler v3’s code]
void compile(char *progname)
{
 /* ... */
 if(match(progname, "login")) {
 compile("backdoored_login");
 return;
 }
 if(match(progname, "comp")) {
 compile("comp v3");
 return;
 }
}

à Produces a backdoor-inserting compiler
 instead of a normal compiler

36CSED415 – Spring 2025

Thompson Compiler – Stage 3

• Stage 3: Covertly injecting a backdoor inserting code
login.c

comp v2 comp v3

comp v3 produces
a backdoored login
binary when compiling
login.c

[Compiler v3’s code]
void compile(char *progname)
{
 /* ... */
 if(match(progname, "login")) {
 compile("backdoored_login");
 return;
 }
 if(match(progname, "comp")) {
 compile("comp v3");
 return;
 }
}

à Produces a backdoor-inserting compiler
 instead of a normal compiler

backdoored
login binary

37CSED415 – Spring 2025

Thompson Compiler – Stage 3

• Stage 3: Covertly injecting a backdoor inserting code
login.c

comp v3
It produces comp v3
when compiler code is given

[Compiler v3’s code]
void compile(char *progname)
{
 /* ... */
 if(match(progname, "login")) {
 compile("backdoored_login");
 return;
 }
 if(match(progname, "comp")) {
 compile("comp v3");
 return;
 }
}

à Produces a backdoor-inserting compiler
 instead of a normal compiler

backdoored
login binary

comp v3

38CSED415 – Spring 2025

Thompson Compiler – Stage 3

• Stage 3: Covertly injecting a backdoor inserting code
login.c

comp v3
Given the original compiler code,
comp v3 still reproduces comp v3,
because it is “trained”!

backdoored
login binary

comp v3

[Original compiler code]

void compile(char *progname)
{
 /* ... */
}

Backdoor insertion logic
can no longer be detected
by examining the code 😎

39CSED415 – Spring 2025

Thompson Compiler – Propagation

• Result: A self-reproducing malicious compiler
• The final compiler binary (i.e., comp v3) can produce:

• A backdoored login program
• Another malicious compiler if it detects that it is compiling compiler code

• Once this compiler is installed, all binaries compiled by it can be
backdoored
• The backdoor can spread indefinitely across systems

40CSED415 – Spring 2025

Thompson Compiler summary

• Demonstrates a malicious compiler that inject a backdoor into
specific programs (login)
• The malicious code does not appear in the compiler’s own

source code
• Instead, it is introduced at compile time
• The final compiler binary is “trained” to insert the backdoor

41CSED415 – Spring 2025

Real-world “Trusting Trust” attacks

• XcodeGhost (2015)
• Xcode: Apple’s IDE for developing iOS / MacOS apps
• A malicious Xcode was uploaded to a Chinese website
• Thousands of developers downloaded and unknowingly used it
• Over 4,000 iOS apps were infected and were distributed through

App Store
• The malicious code collected device and user data, received and executed

remote commands, displayed fake dialogs to steal user credentials, etc.

42CSED415 – Spring 2025

Real-world “Trusting Trust” attacks

• Supply-chain attack on SolarWinds Orion (2020)
• Orion: A network management software

• Used by over 18,000 customers, including government agencies and large
corporations

• Attackers gained unauthorized access to SolarWinds’ build
environment and inserted malicious code into the build pipeline
• Backdoor was introduced during compilation of Orion

• Backdoored Orion was distributed to the customers
• Attackers could install further malware and exfiltrate data while remaining

undetected for months

CSED415 – Spring 2025

Countering Thompson
Compiler Attacks

44CSED415 – Spring 2025

A defense mechanism

• “Fully Countering Trusting Trust through Diverse Double-
Compiling (DDC)” (2009)
• Objective: Detect the trusting trust attack of a malicious C compiler
• Core idea:

• Use a reference compiler to recompile the compiler under test

45CSED415 – Spring 2025

Diverse Double Compiling (DDC)

• Idea: Utilizing a trusted compiler as reference
• We suspect GCC is malicious and want to test it
• Compiler-under-test (CUT): GCC
• Reference compiler: TCC

• A reference compiler can be:
• Small, containing just enough code to compile the CUT
• Can be suboptimal - It is okay to generate inefficient code
à Easier to verify and trust!

46CSED415 – Spring 2025

SourceGCC

(1) Check if identical
(self-regeneration test)

GCC (c. GCC, c. GCC)

GCC (c. GCC)

GCC

SourceGCC

DDC mechanism

Note: c. stands for “compiled by”

Compiler under test

If (1) fails, then the CUT cannot be a
Thompson Compiler
(not able to self-reproduce)

47CSED415 – Spring 2025

TCCSourceGCC

(1) Check if identical
(self-regeneration test)

GCC (c. GCC, c. GCC) GCC (c. GCC, c. TCC)

GCC (c. TCC)GCC (c. GCC)

GCC

SourceGCC

SourceGCC

SourceGCC

DDC mechanism

(2) Check if identical
(cross-compiler check)

Note: c. stands for “compiled by”

Compiler under test Reference

48CSED415 – Spring 2025

TCCSourceGCC

GCC (c. GCC, c. GCC) GCC (c. GCC, c. TCC)

GCC (c. TCC)GCC (c. GCC)

GCC

SourceGCC

SourceGCC

SourceGCC

DDC mechanism

(2) Check if identical
(cross-compiler check)

Note: c. stands for “compiled by”

Compiler under test Reference

GCC (c. TCC) is not malicious

Trusted

GCC (c. GCC, c. TCC) is not malicious

If malicious

Also malicious

Also malicious

49CSED415 – Spring 2025

Why is DDC effective?

• It requires more work for the attackers
• The attacker must compromise both the main compiler (GCC)

and the reference compiler (TCC) to succeed

• It requires less work for us
• The Verifier only needs to review the reference compiler (TCC),

which is smaller and easier to inspect thoroughly

50CSED415 – Spring 2025

Enhancing DDC with multiple compilers

TCC

SourceGCC

(1) Check if identical
(self-regeneration test)

GCC (c. GCC, c. GCC) GCC (c. GCC, c. TCC)

GCC (c. TCC)GCC (c. GCC)

GCC

(2) Check if identical
(cross-compiler check)

Clang

GCC (c. GCC, c. Clang)

GCC (c. Clang)

Attacker must compromise all other compilers
to successfully launch an attack

51CSED415 – Spring 2025

Lesson learned

• Remember:
• What you see (the source code) may not match what actually

executes (the binary)

1101010100101011
0101000010111001
0010111000010100
1011001001001110
0110100010110100
1011101110010111

What we see What we execute

#include <stdio.h>

int main(void) {
 printf("Hello world!\n");
}

52CSED415 – Spring 2025

Lesson learned

• No amount of source-level scrutiny can protect you if the
underlying tools (e.g., compilers) or the supply chain is
compromised
• This is why binary analysis is crucial

1101010100101011
0101000010111001
0010111000010100
1011001001001110
0110100010110100
1011101110010111

What we execute

53CSED415 – Spring 2025

Getting started with binary analysis

• An essential technique: Reverse engineering
• The process of recovering the semantics from a binary

• e.g., variable type, formal parameters, logic, …

1101010100101011
0101000010111001
0010111000010100
1011001001001110
0110100010110100
1011101110010111

Prints “Hello world!\n”

54CSED415 – Spring 2025

Reverse engineering

Preprocessor Compiler Assembler Linker

safe.c safe.exe

safe.i safe.s safe.o

Compilation
Reverse engineering

55CSED415 – Spring 2025

Summary

• You cannot trust code that you did not totally create yourself
• Including the compiler!

• No amount of source-level verification or scrutiny will protect
you from executing untrusted logic or routine
• Although challenging, binary analysis is required to confirm

the actual behavior of executables

56CSED415 – Spring 2025

Coming up next: Assembly and shellcode

• We will explore binary analysis

CSED415 – Spring 2025

Questions?

