Lec 04: On Trusting Trust

CSED415: Computer Security
Spring 2025

Seulbae Kim
POSTECH

Administrivia
e Welcome, survivors!
e 35 students

* Please form six teams for the team project, each with 5-7
students

* Begin searching for teammates now!
* You can utilize “Teammate Finding” board on PLMS

 Finalize your teams by next week (March 7t
* Refer to PLMS assignment for team info submission instructions

* Lab O1is due tomorrow at midnight

CSEDA415 — Spring 2025 2

Administrivia
e Office hours

* TA's online office hours
* Mondays, 7-8 PM
* Thursdays, /-8 PM
* My on-site office hours
* Thursdays, 1-2 PM in my office (Room 434, PIAl Building)

CSEDA415 — Spring 2025 3

Recap

rPOSTRPCH

* Defensive programming and secure coding guidelines

* Buggy code is the root of evil
* Do you remember any of the secure coding rules?
* Have you tried reviewing your own code”?
 From Lecture 03:

* Conformance with the secure coding standard is necessary
(but not sufficient) for reliable and secure software

* Today’s topic: Why is it not sufficient?

CSEDA415 — Spring 2025 4

Source code vs Binary

rPOSTRPCH

* Q) Given both the source code and the binary of a program,
which should you analyze to determine whether it is safe to
execute the program?

CSEDA415 — Spring 2025 5

Source code vs Binary

* Reasons to analyze the source code

* Clarity: Source code is easier to read, understand, and review

* Availability of context: It often contains comments, descriptive
variable names, and meaningful structure

* Fixability: Vulnerabilities found at the source level are typically easier
to correct directly in the code

S

CSEDA415 — Spring 2025 6

Source code vs Binary

rPOSTRPCH

* S0, why bother with binaries??

* Despite the advantages of source code analysis, security experts
often analyze binaries to discover hidden vulnerabilities

* Reason: Today’'s topic

S

CSEDA415 — Spring 2025 7

Key question

rPOSTRPCH

* You have the complete source code of a program. Can you
find all potential vulnerabilities in this program just by
analyzing the given source code?

©o
Y-

CSEDA415 — Spring 2025 8

NO WAY!

Ken Thompson

“Reflections on Trusting Trust”
Communications of the ACM, 1984

CSEDA415 — Spring 2025 rPOSTEREPLCH

On Trusting Trust

CCCCCCC — Spring 2025 rPOSTEREPLCH

Compiler 101

rPOSsSTEPPCH
safe.c safe.exe
1010 |
01l0;
.. BIN

— Compiler

_ /

CSEDA415 — Spring 2025 1"

Compiler 101

safe.c
-

%

(@

S

~

_|—> Preprocessor | r®| Compiler —»| Assembler —> Linker

rPOSTERCH

safe.exe

1010
0ll0;

BIN

safe.i safe.s safe.o

_ /

CSEDA415 — Spring 2025

12

Compiler 101

rPOSsSTEPPCH
safe.exe
e Removes comments 1010
* |ncludes code from headers I E
[]
- Replaces all macros BIN

/ gcc -E \
_|—> Preprocessor | r® Compiler —»| Assembler —> Linker

safe.i safe.s safe.o

_ /

CSEDA415 — Spring 2025 13

Compiler 101

safe.c

7

(@

S

* Generates IR (intermediate representation) code
* Assembly code
* Last human-readable format!

gcc -S

=»1 Assembler

~

_|—> Preprocessor | r®1 Compiler

push ebp

, mov ebp, esp
safe.i sub esp, 0x18 ~

_

safe.o

Linker

rPOSTERCH

safe.exe

1010
0ll0;

BIN

CSEDA415 — Spring 2025

14

Compiler 101

safe.c
-

7

(@

S

* Transforms IR code into object code
* Machine language (binary)

gcc -c

_|—> Preprocessor | r®| Compiler —» Assembler

0101000010010

~

Linker

) 0010110011011 |
sate.s 0110010110001

safe.i

_

rPOSTERCH

safe.exe

1010
0ll0;

BIN

CSEDA415 — Spring 2025

15

Compiler 101

safe.c

* Puts together all
machine code
into an executable

~

S

_|—> Preprocessor | r®| Compiler —»| Assembler —> Linker

rPOSTERCH

safe.exe

1010
0ll0;

BIN

safe.i safe.s safe.o

_ /

CSEDA415 — Spring 2025

16

Question: Can we trust compilers?

safe.c

S

Would a compiler generate a binary that
Is functionally equivalent to the input
source code?

rPOSTERCH

safe.exe

1010}

0ll0;

_

Compiler

7?9

BIN

CSEDA415 — Spring 2025

17

Chasing down a rabbit hole

rPOSTERCH

* To ensure a program is safe, we inspect its source code ©

* But that code is compiled by another program (a compiler)
» So we inspect the compiler’s source code &

* But that compiler was itself compiled by yet another compiler..
... and on it goes, infinitely &

CSEDA415 — Spring 2025 18

Reflections on Trusting Trust

rPOSTERCH

* Ken Thompson (and Dennis Ritchie)

* Received the Turing Award in 1983 for their work on Unix Operating
System

* In his acceptance speech, Thompson demonstrated how to build a
backdoored compiler without leaving a trace in its source code

CSEDA415 — Spring 2025 19

TURING AWARD LECTURE

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan

horses? Perhaps it is more important to trust the people who wrote the
software.

“Reflections on Trusting Trust”, Communications of the ACM, 1984

 https://www.cs.cmu.edu/“rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
 Full text also available on PLMS

CSEDA415 — Spring 2025 POSTERPLCH

https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf

Thompson Compiler — Stage 1
* Stage 1. Understanding the concept of “quine”
* Quine is a self-reproducing code
* A quine in Python 3:
C ='C=5%r; print(c %% c)'; print(c % c)
* AquineinC

char*f="char*f=%c%s%c;main(){printf(f,34,1,34,10);}%c";main(){printf(f
,34,T,34,10); }

CSEDA415 — Spring 2025 21

Thompson Compiler — Stage 1

rPOSTE2LCH
* Thompson’s quine in the paper:
chars[] = { [*
\t’, + The string s is a
0’ + representation of the body
\n « of this program from ’0’
'y ' + to the end.
I.I, */
i main()
f\nf’ {
T int /;
"\n’, printf(“char\ts{ 1= {\n");
(213 lines deleted) for(i=0; s[i]; i++) // print the array initialization
0 printf(“\t%d, \n", s[i]);
I printf(“%s", s); // prints the rest (comments
! and the main function)

CSEDA415 — Spring 2025 22

Thompson Compiler — Stage 2

rPOSTERCH

¢ Stage 2: Understanding the concept of “training” a compiler

[Compiler vI’s code] compiler
c = next();

if(c == "\\") {
c = next(); [compv1]

if(c == 'n'")
return('\n');
}

 Compiler vl knows how to parse \n (hewline character):

 Ifitreads '\', followed by 'n', it returns char '\n'

* |t does not know how to parse \v (vertical tab) yet

CSEDA415 — Spring 2025

23

Thompson Compiler — Stage 2

rPOSTERCH

¢ Stage 2: Understanding the concept of “training” a compiler

[Compiler v2’s code] compiler

c = next();

if(c == "\\") {
c = next(); [compv1]

if(c == 'n'")
return('\n');

if(c == 'v')
return('\v');

}

« We can add a parsing logic for \v in the updated version (compiler v2)
 Ifitreads '\', followed by 'v', it returns char '\v'

CSEDA415 — Spring 2025 24

Thompson Compiler — Stage 2

rPOSTERCH

¢ Stage 2: Understanding the concept of “training” a compiler

[Compiler v2’s code] compiler Result

c = next();
Parse error: '\v' unknown

if(c == "\\") {
c = next(); > [compv1]+>
if(c == 'n")
~return{’\n?); When we try to compile comp v2’s code using comp V1,
if(c == 'v') it fails because comp v1 cannot parse the \v in the new code
return('\v');
}

« We can add a parsing logic for \v in the updated version (compiler v2)
 Ifitreads '\', followed by 'v', it returns char '\v'

CSEDA415 — Spring 2025 25

Thompson Compiler — Stage 2

rPOSTERCH

¢ Stage 2: Understanding the concept of “training” a compiler

[Compiler v2x’s code] compiler Result

c = next();

if(c == "\\") {
c = next(); [compv1]

if(c == 'n'")
return('\n');
if(c == 'v')
return(11);
}

 We update the compiler code to return 11 instead of \v
11 is the ASCII code for char \v

CSEDA415 — Spring 2025 26

Thompson Compiler — Stage 2

rPOSTERCH

¢ Stage 2: Understanding the concept of “training” a compiler

[Compiler v2x’s code] compiler Result

c = next();

if(c == "\\") {
c = next(); > [compv1] <7 [compvz]
if(c == 'n'")
return('\n'); It has “learned” what \v means
1f(c == 'v')
return(11); comp vlis now able to compile the code and produce comp v2
}

 We update the compiler code to return 11 instead of \v
11 is the ASCII code for char \v

CSEDA415 — Spring 2025 27

Thompson Compiler — Stage 2

rPOSTERCH

¢ Stage 2: Understanding the concept of “training” a compiler

[Compiler v2’s code] compiler Result

c = next();

if(c == "\\") {
c = next(); > [compv2]—+>[compv2]
if(c == 'n'")
return('\n"); L . . .
if(c == 'v') Now that comp v2 is trained, it can compile the original v2 code
return('\v'); and self-reproduce itself
}
NOTE: The information it has learned, i.e., '\v' == 11, no longer appears in the code!

It is “baked” into the compiler binary

CSEDA415 — Spring 2025 28

Thompson Compiler — Stage 3

rPOSTERCH

* Stage 3: Injecting a backdoor

login.c (checks if username and password matches)

[Original compiler code]

vold compile(char *progname)

{/*...*/ [comp]
} |

1010]

0l1l0;

e |
login
binary

CSEDA415 — Spring 2025 29

Thompson Compiler — Stage 3

rPOSTERCH

* Stage 3: Injecting a backdoor when compiling login.c

login.c (checks if username and password matches)
[Compiler v2’s code]

vold compile(char *progname)

{ * *

{f(ﬁé‘.cch{progname, "Login")) { _’[] We can use the original compiler
compile("backdoored_login"); comp |—>l comp v2 | to compile comp v2’s code to produce
return; comp v2

} 1

- A compiler that produces B |
a backdoored login binary login
when asked to compile login binary

CSEDA415 — Spring 2025 30

Thompson Compiler — Stage 3

rPOSTERCH

* Stage 3: Injecting a backdoor when compiling login.c

login.c (checks if username and password matches)

[Compiler v2’s code]
vold compile(char *progname)

{ l
/* ... %/

if(match(progname, “login")) { 5 If we compile login.c with comp v2,
compile("backdoored_login"); comp comp v it will produce a backdoored login binary

return;
) }
olio: o]
- A compiler that produces B |) |
a backdoored login binary login backdoored (e.g., allows login if password
when asked to compile login binary login binary is "B4CKdAOOr")

CSEDA415 — Spring 2025 31

Thompson Compiler — Stage 3

rPOSTERCH

* Stage 3: Injecting a backdoor when compiling login.c

login.c (checks if username and password matches)
[Compiler v2’s code]

vold compile(char *progname) l
{
Jx .. %/ Problem:
if(match(progname, “login")) { The backdoor insertion logic in
compile(”backdoored_login®); comp comp v2 compiler v2 can be easily
-t .
} return; 1 detected by examining its code
} ore) oro)
0110, 0110,
- A compiler that produces B |) |
a backdoored login binary login backdoored (e.g. allows login if password
when asked to compile login binary login binary is "B4CKdAOOr")

CSEDA415 — Spring 2025 32

Thompson Compiler — Stage 3

rPOSTERCH

* Stage 3: Injecting a backdoor when compiling login.c

login.c If we remove the logic from the source code

to bypass detection, we can no longer
l re-compile the compiler code

[Original compiler code]
(The backdoor insertion logic is lost) @

vold compile(char *progname)
{/* %/ {compv2]—>[comp]
} 1

- Backdoor insertion logic
1010 IOIOI
0llo 0ll0;

has been removed 10;
(BIN) | (BIN) |

login backdoored
binary login binary

CSEDA415 — Spring 2025 33

Thompson Compiler — Stage 3

rPOSTERCH

* Stage 3: Covertly injecting a backdoor inserting code

[Compiler v3’s code] login.c
vold compile(char *progname)
{
/* ... %/ l
if(match(progname, "login")) {
compile("“backdoored_login");
return; comp v2
}
if(match(progname, "comp")) { 1
compile("comp v3"); ﬁ
return; l)ollg’
b &) |
’ backdoored
—> Produces a backdoor-inserting compiler login binary

instead of a normal compiler

CSEDA415 — Spring 2025 34

Thompson Compiler — Stage 3

* Stage 3: Covertly injecting a backdoor inserting code
[Compiler v3’s code] login.c
vold compile(char *progname)
¢ /*x ... */ l We can compile comp v3 using comp v2
if(match(progname, "login")) {

compile("backdoored_login");
return; comp v2 comp v3
}

if(match(progname, "comp")) { 1
compile("comp v3");

return; loio]

0110,
y @) |
} backdoored
—> Produces a backdoor-inserting compiler login binary

instead of a normal compiler

CSEDA415 — Spring 2025 35

Thompson Compiler — Stage 3

rPOSTERCH

* Stage 3: Covertly injecting a backdoor inserting code

[Compiler v3’s code] login.c

vold compile(char *progname)
{ N
[* x/ l
if(match(progname, "login")) { comp v3 produces
compile("backdoored_login"); 5 3 a backdoored login
return; comp v comp v binary when compiling
} login.c
if(match(progname, "comp")) { 1
compile("comp v3"); _'1
return; 10101
b &) |
; backdoored
- Produces a backdoor-inserting compiler Iogin binary

instead of a normal compiler

CSEDA415 — Spring 2025 36

Thompson Compiler — Stage 3

* Stage 3: Covertly injecting a backdoor inserting code
[Compiler v3’s code] login.c
vold compile(char *progname)
{
if(match(progname, "login")) {
compile("backdoored_login"); {Comp v3 I II comp v3]
v return; It produces comp v3
if(match(progname, "comp")) { when compiler code is given 1
compile("comp v3");

return; loig]

0ll0;
) @n) |
i backdoored
- Produces a backdoor-inserting compiler login binary

instead of a normal compiler

CSEDA415 — Spring 2025 37

Thompson Compiler — Stage 3

rPOSTERCH

* Stage 3: Covertly injecting a backdoor inserting code

login.c

[Original compiler code] S l

vold compile(char *progname)

{/* Y, ’[compv3]—>[compv3]
} Given the original compiler code,

comp v3 still reproduces comp v3, 1
because it is “trained”!

o]
Backdoor insertion logic @J
can no longer be detected backdoored

by examining the code © Iogin binary

CSEDA415 — Spring 2025 38

Thompson Compiler — Propagation

rPOSTERCH

* Result: A self-reproducing malicious compiler

* The final compiler binary (i.e., comp v3) can produce:
* A backdoored login program
* Another malicious compiler if it detects that it is compiling compiler code

* Once this compiler is installed, all binaries compiled by it can be
backdoored
* The backdoor can spread indefinitely across systems

CSEDA415 — Spring 2025 39

Thompson Compiler summary

rPOSTERCH

* Demonstrates a malicious compiler that inject a backdoor into
specific programs (login)

* The malicious code does not appear in the compiler’s own
source code

* Instead, it is introduced at compile time
* The final compiler binary is “trained” to insert the backdoor

CSEDA415 — Spring 2025 40

Real-world “Trusting Trust” attacks

rPOSTERCH

* XcodeGhost (2015)

» Xcode: Apple’s IDE for developing iOS / MacOS apps
* A malicious Xcode was uploaded to a Chinese website
* Thousands of developers downloaded and unknowingly used it

* Over 4,000 iOS apps were infected and were distributed through
App Store

* The malicious code collected device and user data, received and executed
remote commands, displayed fake dialogs to steal user credentials, etc.

CSEDA415 — Spring 2025 41

Real-world “Trusting Trust” attacks

rPOSTERCH

* Supply-chain attack on SolarWinds Orion (2020)"/’

* Orion: A network management software

* Used by over 18,000 customers, including government agencies and large
corporations

* Attackers gained unauthorized access to SolarWinds’ build
environment and inserted malicious code into the build pipeline
e Backdoor was introduced during compilation of Orion
 Backdoored Orion was distributed to the customers

* Attackers could install further malware and exfiltrate data while remaining
undetected for months

CSEDA415 — Spring 2025 42

Countering Thompson
Compiler Attacks

CCCCCCC — Spring 2025 rPOSTEREPLCH

A defense mechanism

rPOSTERCH

* “Fully Countering Trusting Trust through Diverse Double-
Compiling (DDC)” (2009)
* Objective: Detect the trusting trust attack of a malicious C compiler

 Core idea:
e Use a reference compiler to recompile the compiler under test

CSEDA415 — Spring 2025 44

Diverse Double Compiling (DDC)

rPOSTERCH

* |dea: Utilizing a trusted compiler as reference

* We suspect GCC is malicious and want to test it
 Compiler-under-test (CUT): GCC
* Reference compiler: TCC

* A reference compiler can be:
* Small, containing just enough code to compile the CUT
* Can be suboptimal - It is okay to generate inefficient code
- Easier to verify and trust!

CSEDA415 — Spring 2025 45

DDC mechanism

rPOSTERCH

Compiler under test

Sourcegec ™ [GCC]

v

SourceGCC#[GCC (c. GCC)]

(1) Check if identical l
(self-regeneration test

GCC (c. GCC, c. GCC)]

If (1) fails, then the CUT cannot be a
Thompson Compiler
(not able to self-reproduce)

Note: c. stands for “compiled by”

CSEDA415 — Spring 2025 46

DDC mechanism

rPOSTERCH

Compiler under test Reference
Sourcegec ™ [GCC] TCC &= Sourcegec
Sourcegec ™ [GCC (c. GCQ)] GCC (c. TCC) = Sourcegec
(1) Check if identical l l

(self-regeneration test

GCC (c. GCC, c. GCC)] [GCC (c. GCC, c. TCC)]

\ (2) Check if identical /

(cross-compiler check)

Note: c. stands for “compiled by”

CSEDA415 — Spring 2025 47

DDC mechanism

Compiler under test Reference
Sourcegec ™ [GCC] TCC &= Sourcegec
If malicious l l Trusted
Sourcegec "™ [GCC (c. GCQ)] GCC (c. TCQC) = Sourcegec
Also malicious l l GCC (c. TCC) is not malicious

[GCC (c. GCC, c. GCC)] [GCC (c. GCC, c. TCC)]

Also malicious \ / GCC (c. GCC, c. TCC) is not malicious
(2) Check if identical

(cross-compiler check)

Note: c. stands for “compiled by”

CSEDA415 — Spring 2025 48

Why is DDC effective?

rPOSTERCH

* It requires more work for the attackers

* The attacker must compromise both the main compiler (GCC)
and the reference compiler (TCC) to succeed

* It requires less work for us

* The Verifier only needs to review the reference compiler (TCC),
which is smaller and easier to inspect thoroughly

CSEDA415 — Spring 2025 49

Enhancing DDC with multiple compilers

rPOSTERCH

Attacker must compromise all other compilers

Sourcegcc 1 to successfully launch an attack
[GCC] TCC Clang
—»[GCC (c. GCCQ)] GCC (c. TCC) GCC (c. Clang)
(1) Check if identical
(self-regeneration test) l l l

[GCC (c. GCC, c. GCC)] [GCC (c. GCC, c. TCC)] [GCC (c. GCC, c. Clang)]

}
\ (2) Check if identical

(cross-compiler check)

CSEDA415 — Spring 2025 50

L esson learned

e Remember:

* What you see (the source code) may not match what actually
executes (the binary)

#include <stdio.h>

int main(void) {

printf("“Hello world!

}

CSEDA415 — Spring 2025

What we see

")

1101010100101011
0101000010111001
0010111000010100
1011001001001110
0110100010110100
1011101110010111

What we execute

rPOSTERCH

51

L esson learned

rPOSTERCH

* No amount of source-level scrutiny can protect you if the
underlying tools (e.g., compilers) or the supply chain is
compromised

* This is why binary analysis is crucial
1010100101011
000010111001
0111000010100

1011001001001110
0110100010110100
1011101110010111

What we execute

CSEDA415 — Spring 2025 52

Getting started with binary analysis

rPOSTERCH

* An essential technique: Reverse engineering

* The process of recovering the semantics from a binary
* e.g., variable type, formal parameters, logic, ...

1101010100101011
0101000010111001

0010111000010100 .

1011001001001110 » Prints “Hello world\n”
0110100010110100

1011101110010111

CSEDA415 — Spring 2025 53

Reverse engineering

safe.c

Compilation ——»
4—— Reverse engineering

S

~

_|—> Preprocessor | r® Compiler —»| Assembler —> Linker

rPOSTERCH

safe.exe

1010
0ll0;

BIN

safe.i safe.s safe.o

_ /

CSEDA415 — Spring 2025

54

Summary

rPOSTERCH

* You cannot trust code that you did not totally create yourself
* Including the compiler!

* No amount of source-level verification or scrutiny will protect
you from executing untrusted logic or routine

* Although challenging, binary analysis is required to confirm
the actual behavior of executables

CSEDA415 — Spring 2025 55

Coming up next: Assembly and shellcode

* We will explore binary ana

CSEDA415 — Spring 2025

lower
memory

Text addresses

/ \
I I
I I
I I
I I
| (Initialized) |
| Data |
| (Uninitialized) |
I I
| I
I I
| I
\ /

Stack higher
memory

addresses

Fig. 1 Process Memory Regions

lysis

pwndbg> r

Starting program: /home/lab@1/target
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/1ib/x86_64-1linux-gnu/libthread_db.so.1".

Breakpoint 1,

304938b 1in

LEGEND: STACK | HEAP

EAX 0x0
EBX 0x3f3

ECX 0xfbad0o8b

EDX

phase_one O
| | RWX | RODAT,
[REGISTERS

<« 0x0

EDI @xf7facb8@ (_rtld_global_ro) «— @x@
EST @xff9cbfb4 —» @xff9cd792 «- '/home/1ab@l/target’
EBP @xff9cbed8 —» @Oxff9cbee8 —»

ESP Oxff9cbead —» Oxf7d3e994 «— 0x4fd5

EIP

» 0x804938b
0x8049392
0x8049395
0x8049398
0x8049399

0x804939%
0x80493al
0x80493a4
0x80493a7
0x80493a9

0x80493ab

:0000| esp
10004 | -034
10008 | -030
:000c | -02c
10010 |-028
10014 | -024
:0018 | -020
:001c|-01c

<phase_one+6>

<phase_one+13>
<phase_one+16>
<phase_one+19>
<phase_one+20>

<phase_one+25>
<phase_one+28>
<phase_one+31>
<phase_one+34>
<phase_one+36>

<phase_one+38>

0xff9cbead
Oxff9Icbead
Oxff9Icbead
OxffIcbeac
Oxff9Icbebd
Oxff9cbebs
@xff9cbeb8
@xff9cbebc

@ 0x804938b phase_one+6
1 0x80494d8 main+85
2 Oxf7d51519 __libc_start_call_main+121
3 Oxf7d515f3 __libc_start_main+147
4 0x804913c _start+44

<«— mov dword ptr [ebp -

[DISASM

2c], 0x10

ulate on

mov dword ptr [ebp - @0x2c], 0x10
mov eax, dword ptr [ebp - 0x2c]

sub esp, Oxc
push eax
call malloc@plt

add esp, 0x10

mov dword ptr [ebp - 0x28], eax
mov eax, dword ptr [ebp -

test eax, eax
jne phase_one+64

sub esp,

0xf7d3e994 «— 0x4fd5
0x3f3

[STACK]

<« 0xf7f6f500

0x0
Oxff9cbee8 —»

0x0
0x3f3

[BACKTRACE]

<«— pop edx

]

rPOSTERCH

56

Questions?

CCCCCCC — Spring 2025 rPOSTEREPLCH

