
Seulbae Kim

CSED415: Computer Security
Spring 2025

Lec 07: Attacks and Defenses (1)

2CSED415 – Spring 2025

Administrivia

• Project teams are (almost) ready!
• Compsec랩프린터기종이도둑 (CompSec Lab Printer Paper Thieves)
• Potato Salad
• SecuXchange
• 전선상어 (Wireshark)

• And.. We still have 7 enrolled students left without a team
• How about teaming up?
• Select the leader and team name, and make a submission on PLMS by Mar 14

3CSED415 – Spring 2025

Recap

• Shellcode, Morris Worm, BoF, Control Flow
• Return-to-stack-where-my-shellcode-is-injected: A 40-year-old exploit

How can we mitigate such an attack?

How can we circumvent the implemented mitigation?

How can we mitigate the advanced attack?

How can we circumvent the advanced mitigation?

CSED415 – Spring 2025

Defense #1: NX

5CSED415 – Spring 2025

Let’s think about the policy

• Return-to-stack attack
• Loads a shellcode onto the stack of a victim program
• The victim program jumps to the shellcode and executes it

But.. should the contents of the stack
(which are typically data) be executable?

6CSED415 – Spring 2025

NX: No eXecute

• A hardware-based mitigation for arbitrary code execution
• The CPU’s MMU (memory management unit) is in charge

• NX policy:
• Separate the memory regions (pages) that contain code from those

containing data
• Only grant eXecute permission to the code pages (Code: X)
• Remove eXecute permission from the data pages (Data: NX)

• Enforcement:
• Mark the stack pages (data region) with the NX flag

7CSED415 – Spring 2025

NX: No eXecute

• A hardware-based mitigation for arbitrary code execution
• The CPU’s MMU (memory management unit) is in charge

• NX policy:
• Separate the memory regions (pages) that contain code from those

containing data
• Only grant eXecute permission to the code pages (Code: X)
• Remove eXecute permission from the data pages (Data: NX)

• Enforcement:
• Mark the stack pages (data region) with the NX flag

asdf

A generalized policy utilizing NX: W^X (Write xor eXecute)
à Every page in a process can be either writable or executable,
 but never both simultaneously.

8CSED415 – Spring 2025

NX – Low-level implementation

.text

.plt

heap

stack

.rodata

…

Virtual Addr Space Page Table
(simplified)

Physical Memory
(RAM)

Page Frame Flags NX

1 0

2 0

3 0

4 1

…

9 1

…

16 1

page 4

page 2

page 1

page 3

NX flag is set for data-related pages

Address
translation

MMU (Memory
Management Unit)

9CSED415 – Spring 2025

NX – Low-level implementation

.text

.plt

heap

stack

.rodata

…

Page Frame Flags NX

1 0

2 0

3 0

4 1

…

9 1

…

16 1

eip = 0xffbf8190

Page num: 16

NX bit set?

Page fault exception

Fetch instruction

Execute
N

Y

Virtual Addr Space Page Table
(simplified)

MMU (Memory
Management Unit)

10CSED415 – Spring 2025

What if hardware (MMU) doesn’t support NX?

• OS-level implementations can emulate NX
• Linux PaX (PageeXec): Emulates the NX bit on CPUs without native

support
• e.g., Older x86 (i386) CPUs did not natively support NX
• The kernel (OS) checks whether code can be executed from a page

• More technical details: https://pax.grsecurity.net/docs/pageexec.txt

https://pax.grsecurity.net/docs/pageexec.txt
https://pax.grsecurity.net/docs/pageexec.txt

11CSED415 – Spring 2025

Defeating return-to-stack attacks

• Stack

0x7fffffffe230 : push 0x68
0x7fffffffe232 : mov rax, 0x732f2f2f6e69622f
...

Hijacked control flow

MMU Page fault

ret addr. into libc0x7fffffffe438

saved rbp = 10x7fffffffe430

0x7fffffffe220

0x7fffffffe228 edi

rsi

0x7fffffffe230

buf[512]

0x6e69622fb848688a
0xe7894850732f2f2f

...

0x7fffffffe230

RIP

12CSED415 – Spring 2025

execstack

• GCC compile option (passed directly to linker)
• $ gcc morris.c -z execstack -o morris
• Makes the binary’s stack executable by clearing NX flag

• Tool to set, clear, or query NX stack flag of binaries
• $ execstack -q <filename> ; query NX flag
• $ execstack -c <filename> ; set NX flag
• $ execstack -s <filename> ; clear NX flag

13CSED415 – Spring 2025

Demo: X vs NX

• Additional experiments with the Morris Worm
/* morris.c */
int main(int argc, char* argv[]) {
 char buffer[512]; // to store remote requests
 printf("%p\n", &buffer); // for demo
 gets(buffer); // oops!
 return 0;
}

$ gcc -O0 -fno-stack-protector -fno-pic -no-pie -z execstack morris.c -o morris-x

$ gcc -O0 -fno-stack-protector -fno-pic -no-pie morris.c -o morris-nx

14CSED415 – Spring 2025

Demo: X vs NX

• Additional experiments with the Morris Worm
exploit.py
from pwn import *
context.arch = "amd64"
sc = shellcraft.linux.sh()

TARGET1 = "./morris-x"
TARGET2 = "./morris-nx"
p = process(TARGET1) # switch to TARGET2
addr_buf = int(p.readline(), 16)

payload = asm(sc)
payload += b"A" * (520 - len(payload))
payload += p64(addr_buf)

p.sendline(payload)
p.interactive()

Attacking TARGET1 (X)

Attacking TARGET2 (NX)

15CSED415 – Spring 2025

NX is enabled for Lab target binaries

• W^X policy is enforced
• All pages are never Writable and eXecutable at the same time

16CSED415 – Spring 2025

Rethinking the W^X policy

• NX is very effective against code injection attacks
• Then, why is NX even an option?
• Do we ever need to store code on stack and execute them?

Sometimes!

17CSED415 – Spring 2025

Execstack example: Just-in-time (JIT) compilation

• Workflow of interpreted languages (e.g., Java)

java .class

source
code

bytecode

Java Virtual
Machine

(JVM)

interpreter

machine code
executed

compile execute

Runtime

processor

Machine code is generated
at runtime à SLOW

18CSED415 – Spring 2025

Execstack example: Just-in-time (JIT) compilation

• Optimizing for better performance

java .class

source
code

bytecode

Java Virtual
Machine

(JVM)

interpreter

machine code
executed

compile execute

processor
Profiler

Checks for frequently
used code (e.g., loops,
repeated function calls)

Runtime

19CSED415 – Spring 2025

Execstack example: Just-in-time (JIT) compilation

• Optimizing for better performance

java .class

source
code

bytecode

Java Virtual
Machine

(JVM)

machine code
executed

compile execute

processor
Profiler

Compiles them into
machine code (MC)
and store in stack

JIT
compiler

Runtime

interpreter

20CSED415 – Spring 2025

Execstack example: Just-in-time (JIT) compilation

• Optimizing for better performance

java .class

source
code

bytecode

Java Virtual
Machine

(JVM)

machine code
executed

compile execute

processor
Profiler

Next time the same
code is given, stored
MC is exectued

JIT
compiler

Runtime

interpreter

stored MC

Less # of runtime MC generation
à Better performance!

21CSED415 – Spring 2025

Execstack example: Just-in-time (JIT) compilation

• W^X policy cannot be enforced for JVM process

java .class

source
code

bytecode

Java Virtual
Machine

(JVM)

machine code
executed

compile execute

processor
Profiler

JIT
compiler

Runtime

interpreter

stored MC

(process)

à writable memory area
needs to be executed

(Can’t use NX)

Next time the same
code is given, stored
MC is exectued

CSED415 – Spring 2025

Attack #1-1: Bypassing NX
with Return-to-libc Attacks

23CSED415 – Spring 2025

Bypassing NX

• Return-to-stack is no longer possible if stack is NX
• Injected shellcode is not executable

• New attack idea: Returining to an existing code
• Bypasses NX because existing code is always executable
• This is often called a “code reuse attack”
• Q) Can you think of any good code to return to?

24CSED415 – Spring 2025

A good target: libc (GNU C Library)

• libc: A standard library that most C programs use
• Contains a wide variety of useful functions

• Process execution: execve(), system(), popen(), …
• File I/O: open(), read(), write(), fopen(), fread(), …
• String operation: strcpy(), memcpy(), memset(), …
• MMIO: mmap()
• Memory protection: mprotect()

Let’s craft a return-to-libc attack!

25CSED415 – Spring 2025

Note: x86_64 vs x86 calling conventions

Created by a
function call

Virtual memoryLowest
address

Highest
address

.text

.data

.bss

heap

stack

.rodata

funccall arguments
(7th-nth params)

return address
into the caller

saved frame pointer
(RBP of previous

call frame)

local variables
(e.g., buf[2048])

Call frame / Stack frame (x86_64)

(args #1-#6 are in
 rdi, rsi, rdx,
 rcx, r8, r9)

①

②

③

④

Pushed by the
call instruction

Pushed by the callee
at its prologue

Callee’s code:
sub rsp, 0x800

26CSED415 – Spring 2025

Note: x86_64 vs x86 calling conventions

Created by a
function call

Virtual memoryLowest
address

Highest
address

.text

.data

.bss

heap

stack

.rodata

return address
into the caller

saved frame pointer
(RBP of previous

call frame)

local variables
(e.g., buf[2048])

Call frame / Stack frame (x86)

Pushed by the caller①

②

③

④

Pushed by the
call instruction

Pushed by the callee
at its prologue

Callee’s code:
sub esp, 0x800

funccall arguments
(1st-nth params)

27CSED415 – Spring 2025

Note: x86_64 vs x86 calling conventions

Created by a
function call

Virtual memoryLowest
address

Highest
address

.text

.data

.bss

heap

stack

.rodata

return address
into the caller

saved frame pointer
(RBP of previous

call frame)

local variables
(e.g., buf[2048])

Call frame / Stack frame (x86)

Pushed by the caller①

②

③

④

Pushed by the
call instruction

Pushed by the callee
at its prologue

Callee’s code:
sub esp, 0x800

funccall arguments
(1st-nth params)

asdf
We will temporarily switch to x86 (32-bit)
to demonstrate return-to-libc.

28CSED415 – Spring 2025

Return-to-libc attack (x86)

• Example: Invocation of system("/bin/sh");

#include <stdlib.h>

int main(void) {
 system("/bin/sh");
 return 0;
}

compile

29CSED415 – Spring 2025

Background: x86 Stack machine workflow

• Example: Invocation of system("/bin/sh");

higher

lower

Next instruction:
Load the address of "/bin/sh" in edx

ESP

EIP

EBP

Points to .rodata where
"/bin/sh" is stored

Note: 4 bytes (x86: 32-bit)

30CSED415 – Spring 2025

Background: x86 Stack machine workflow

• Example: Invocation of system("/bin/sh"); - pushing an arg

higher

lower

Next instruction:
Push the address of "/bin/sh"

ESP

EIP

EBP

Note: 4 bytes (x86: 32-bit)

31CSED415 – Spring 2025

Background: x86 Stack machine workflow

• Example: Invocation of system("/bin/sh");

higher

lower

Next instruction:
(irrelevant)

ESP
EIP

EBP

arg: pointer_to_bin_sh

Note: 4 bytes (x86: 32-bit)

32CSED415 – Spring 2025

Background: x86 Stack machine workflow

• Example: Invocation of system("/bin/sh");

higher

lower

ESP
EIP

EBP

arg: pointer_to_bin_sh

Next instruction: Call, i.e.,
(1) Push return addr (next eip) and
(2) Jump to system

Note: 4 bytes (x86: 32-bit)

33CSED415 – Spring 2025

Background: Stack machine workflow

• Example: Invocation of system("/bin/sh"); - prologue

Next instruction:
Function prologue (1): save ebp

higher

lower

ESP

EBP

arg: pointer_to_bin_sh

return address

EIP

Note: 4 bytes (x86: 32-bit)

34CSED415 – Spring 2025

Background: Stack machine workflow

• Example: Invocation of system("/bin/sh"); - prologue

Next instruction:
Function prologue (2): copy esp to ebp

higher

lower

ESP

EBP

arg: pointer_to_bin_sh

return address

EIP

saved ebp

Note: 4 bytes (x86: 32-bit)

35CSED415 – Spring 2025

Background: Stack machine workflow

• Example: Invocation of system("/bin/sh"); - prologue

Next instruction:
Reserve space for local variables

higher

lower

ESPEBP

arg: pointer_to_bin_sh

return address

EIPsaved ebp

Note: 4 bytes (x86: 32-bit)

36CSED415 – Spring 2025

Background: Stack machine workflow

• Example: Invocation of system("/bin/sh"); - accessing arg

Next instruction:
Access function params using ebp
(e.g., 1st arg is at ebp+8)

higher

lower
ESP

EBP

arg: pointer_to_bin_sh

return address
EIP

saved ebp

local vars (16B)

Note: 4 bytes (x86: 32-bit)

37CSED415 – Spring 2025

Background: Stack machine workflow

• Example: Invocation of system("/bin/sh"); - accessing arg

higher

lower
ESP

EBP

arg: pointer_to_bin_sh

return address

EIP

saved ebp

local vars (16B)

ebp+8

pointer_to_bin_sh is saved in edx
for internal use

Note: 4 bytes (x86: 32-bit)

38CSED415 – Spring 2025

Background: Stack machine workflow

• Example: Invocation of system("/bin/sh"); - cleaning up

higher

lower
ESP

EBP

arg: pointer_to_bin_sh

return address

EIP

saved ebp

local vars (16B)

ebp+8

Next instruction:
leave == mov esp,ebp;
 pop ebp;
(clean up stack and restore saved ebp)

Note: 4 bytes (x86: 32-bit)

39CSED415 – Spring 2025

Background: Stack machine workflow

• Example: Invocation of system("/bin/sh"); - cleaning up

higher

lower

ESPEBP

arg: pointer_to_bin_sh

return address

EIP

saved ebp

local vars (16B)

ebp+8

Next instruction:
leave == mov esp,ebp;
 pop ebp;
(clean up stack and restore saved ebp)

Note: 4 bytes (x86: 32-bit)

40CSED415 – Spring 2025

Background: Stack machine workflow

• Example: Invocation of system("/bin/sh"); - cleaning up

higher

lower

ESP

arg: pointer_to_bin_sh

return address

saved ebp

local vars (16B)

Next instruction:
leave == mov esp,ebp;
 pop ebp;
(clean up stack and restore saved ebp)

EBP

EIP

Note: 4 bytes (x86: 32-bit)

41CSED415 – Spring 2025

Background: Stack machine workflow

• Example: Invocation of system("/bin/sh"); - returning

higher

lower

ESP

arg: pointer_to_bin_sh

return address

EIP

saved ebp

local vars (16B)

Next instruction:
ret == pop eip;
(return to caller-saved address)

EBP

Note: 4 bytes (x86: 32-bit)

42CSED415 – Spring 2025

Background: Stack machine workflow

• Example: Invocation of system("/bin/sh"); - returning

higher

lower

ESP

pointer_to_bin_sh

return address

EIP

saved ebp

local vars (16B)

Next instruction:
ret == pop eip;
(return to caller-saved address)

EBP

asdf

The CPU is agnostic of the high-level execution semantics.
It accesses arguments using ebp and returns to the saved
address by referencing esp.

43CSED415 – Spring 2025

Return-to-libc attack (x86)

• Stack layout of victim function

higher

lower

return address

saved ebp

victim function’s
calling contextbuf[8]

Note: 4 bytes (x86: 32-bit)

44CSED415 – Spring 2025

Return-to-libc attack (x86)

• Attack payload

higher

lower

return address

saved ebp

buf[8]

addr_system()

0xdeadbeef

addr_"/bin/sh"

overflow
until

retaddr
+8

AAAA

AAAA

AAAA

Note: 4 bytes (x86: 32-bit)

45CSED415 – Spring 2025

Return-to-libc attack (x86)

• Before victim function returns

higher

lower

ret_addr

saved ebp

buf[8]

addr_system()

0xdeadbeef

addr_"/bin/sh"

AAAA

AAAA

AAAA

buf

ebp

ret

Next instruction:
ret == pop eip
(return to saved address, which is
overwritten with system()’s address)

EIP

ESP

Note: 4 bytes (x86: 32-bit)

46CSED415 – Spring 2025

Return-to-libc attack (x86)

• After victim function returns to system

higher

lower

ret_addr

saved ebp

buf[8]

addr_system()

0xdeadbeef

addr_"/bin/sh"

AAAA

AAAA

AAAA

EIP

ESP

Next instruction:
Function prologue (1): save ebp

Note: 4 bytes (x86: 32-bit)

47CSED415 – Spring 2025

Return-to-libc attack (x86)

• After victim function returns to system

higher

lower

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_"/bin/sh"

AAAA

AAAA

AAAA

EIP

ESP

Next instruction:
Function prologue (2): copy esp to ebp

AAAA

Note: 4 bytes (x86: 32-bit)

48CSED415 – Spring 2025

Return-to-libc attack (x86)

• After victim function returns to system

higher

lower

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_"/bin/sh"

AAAA

AAAA

AAAA

EIP

ESPAAAAEBP

Next instruction:
Reserve stack space

Note: 4 bytes (x86: 32-bit)

49CSED415 – Spring 2025

Return-to-libc attack (x86)

• After victim function returns to system

higher

lower

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_"/bin/sh"

AAAA

AAAA

AAAA EIP

ESP

AAAAEBP

Next instruction:
Access function params using ebp
(e.g., 1st arg is at ebp+8)

Note: 4 bytes (x86: 32-bit)

50CSED415 – Spring 2025

Return-to-libc attack (x86)

• After victim function returns to system

higher

lower

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_"/bin/sh"

AAAA

AAAA

AAAA
EIP

ESP

EBP

ebp+8
pointer_to_bin_sh is saved in edx
for internal use

AAAA

We’ve controlled
the arg of system()

Note: 4 bytes (x86: 32-bit)

51CSED415 – Spring 2025

Return-to-libc attack (x86)

• After victim function returns to system

higher

lower

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_"/bin/sh"

AAAA

AAAA

AAAA

EIP

ESP

EBP

ebp+8
Next instruction:
leave == mov esp,ebp;
 pop ebp;
(clean up stack and restore saved ebp)

AAAA

Note: 4 bytes (x86: 32-bit)

52CSED415 – Spring 2025

Return-to-libc attack (x86)

• After victim function returns to system

higher

lower

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_"/bin/sh"

AAAA

AAAA

AAAA

EIP
ESPEBP

ebp+8
Next instruction:
leave == mov esp,ebp;
 pop ebp;
(clean up stack and restore saved ebp)

AAAA

Note: 4 bytes (x86: 32-bit)

53CSED415 – Spring 2025

Return-to-libc attack (x86)

• After victim function returns to system

higher

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_"/bin/sh"

AAAA

AAAA

AAAA

ESP

EBP

ebp+8
Next instruction:
leave == mov esp,ebp;
 pop ebp;
(clean up stack and restore saved ebp)

AAAA
EIP

Note: 4 bytes (x86: 32-bit)

54CSED415 – Spring 2025

Return-to-libc attack (x86)

• After victim function returns to system

higher

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_"/bin/sh"

AAAA

AAAA

AAAA

EIP
ESP

EBP

ebp+8
Next instruction:
return to 0xdeadbeef
(and then crash)

AAAA

Note: 4 bytes (x86: 32-bit)

55CSED415 – Spring 2025

Return-to-libc attack (x86)

• After victim function returns to system

higher

ret_addr

saved ebp

buf[8]

0xdeadbeef

addr_"/bin/sh"

AAAA

AAAA

AAAA

EIP
ESP

EBP

ebp+8
Next instruction:
return to 0xdeadbeef
(and then crash)

AAAA

1. We created a fake stack with fake ret addr and an argument
2. system("/bin/sh"); is executed as if it is legitimately invoked
3. Program crashes at 0xdeadbeef (return addr of the fake stack)

56CSED415 – Spring 2025

Return-to-libc (x86) summary

• We can reuse the existing code in libc to bypass NX
• Create and feed a fake stack frame into a buffer by exploiting

vulnerabilities
• The return address points to a libc function
• The arguments are placed correctly on the stack (ebp+8, …)

• Libc function will be executed with the user-controlled arguments

Are we happy with this?

57CSED415 – Spring 2025

Return-to-libc (x86) summary

• Limitations of the return-to-libc attack
• It does not work for x86_64 (64-bit) targets

• Arguments should be stored in registers (RDI, RSI, RDX, …), not on the stack
• How can we mov the pointer to "/bin/sh" into RDI?

• It can only invoke one function and then crash
• Easily mitigated because a program may disallow certain functions (system) or

syscalls (execve). Can we make it execute multiple libc functions, instead?
• e.g., a sequence of functions to print the contents of "flag.txt"

• int fd = open("flag.txt", O_RDONLY); // open a file (fd=3)
• read(fd, gbuf_addr, 1040); // read from fd into a global buffer
• write(1, gbuf_addr, 1040); // write gbuf to stdout (fd=1)

(Note: File descriptors 0, 1, 2 are reserved for stdin, stdout, stderr)

58CSED415 – Spring 2025

Extensibility of return-to-libc

• Example: Chaining three libc function calls

higher

lower

ret_addr

saved ebp

buf[8]

addr_open()

???

addr_"flag.txt"

AAAA

AAAA

AAAA

0 (O_RDONLY)

1. open("flag.txt", O_RDONLY); is invoked
2. return to ???

[Goal]
1. int fd = open("flag.txt", O_RDONLY);
2. read(fd, gbuf_addr, 1040);
3. write(stdout, gbuf_addr, 1040);

[Payload]

59CSED415 – Spring 2025

Extensibility of return-to-libc

• Example: Chaining three libc function calls

higher

lower

ret_addr

saved ebp

buf[8]

addr_open()

addr_read()

AAAA

AAAA

AAAA

0 (O_RDONLY)

1. open("flag.txt", O_RDONLY); is invoked
2. return to read();

[Goal]
1. int fd = open("flag.txt", O_RDONLY);
2. read(fd, gbuf_addr, 1040);
3. write(stdout, gbuf_addr, 1040);

addr_"flag.txt" args??

60CSED415 – Spring 2025

Extensibility of return-to-libc

• Example: Chaining three libc function calls

higher

lower

ret_addr

saved ebp

buf[8]

addr_open()

AAAA

AAAA

AAAA

0 (O_RDONLY)

1. open("flag.txt", O_RDONLY); is invoked
2. return to read();

args??

1st arg is already set to 0
(However, what we need is

the fd returned by open)

addr_read()

[Goal]
1. int fd = open("flag.txt", O_RDONLY);
2. read(fd, gbuf_addr, 1040);
3. write(stdout, gbuf_addr, 1040);

addr_"flag.txt"

addr_read

1st arg of read

2nd arg of read

3rd arg of read

61CSED415 – Spring 2025

Extensibility of return-to-libc

• Example: Chaining three libc function calls

higher

lower

ret_addr

saved ebp

buf[8]

addr_open()

AAAA

AAAA

AAAA

0 (O_RDONLY)

1. open("flag.txt", O_RDONLY); is invoked
2. return to read(0, gbuf_addr, 1040);

gbuf_addr

1040
Q) Can you identify two issues?

addr_read()

[Goal]
1. int fd = open("flag.txt", O_RDONLY);
2. read(fd, gbuf_addr, 1040);
3. write(stdout, gbuf_addr, 1040);

addr_"flag.txt"

addr_read

1st arg of read

2nd arg of read

3rd arg of read

62CSED415 – Spring 2025

Extensibility of return-to-libc

• Example: Chaining three libc function calls

higher

lower

ret_addr

saved ebp

buf[8]

addr_open()

AAAA

AAAA

AAAA

0 (O_RDONLY)

1. open("flag.txt", O_RDONLY); is invoked
2. return to read(0, gbuf_addr, 1040);

gbuf_addr

1040

Issue #1:
Reads 1040 bytes from fd = 0 (stdin) into a buffer
à Not what we wanted :(

addr_read()

[Goal]
1. int fd = open("flag.txt", O_RDONLY);
2. read(fd, gbuf_addr, 1040);
3. write(stdout, gbuf_addr, 1040);

addr_"flag.txt"

addr_read

1st arg of read

2nd arg of read

3rd arg of read

63CSED415 – Spring 2025

Extensibility of return-to-libc

• Example: Chaining three libc function calls

higher

lower

ret_addr

saved ebp

buf[8]

addr_open()

addr_read()

AAAA

AAAA

AAAA

0 (O_RDONLY)

1. open("flag.txt", O_RDONLY); is invoked
2. return to read(0, gbuf_addr, 1040);

gbuf_addr

1040 Issue #2: read() returns to addr_"flag.txt"
à Call chain breaks here :(

[Goal]
1. int fd = open("flag.txt", O_RDONLY);
2. read(fd, gbuf_addr, 1040);
3. write(stdout, gbuf_addr, 1040);

addr_"flag.txt" Issue #1:
Reads 1040 bytes from fd = 0 (stdin) into a buffer
à Not what we wanted :(

addr_read

1st arg of read

2nd arg of read

3rd arg of read

64CSED415 – Spring 2025

Problems of naïve chaining

• To chain multiple functions, the payload must include:

ret: 1st func addr (open)

retaddr after 1st func

1st func arg 1

1st func arg 2

1st func arg 3

65CSED415 – Spring 2025

Problems of naïve chaining

• To chain multiple functions, the payload must include:

ret: 1st func addr (open)

retaddr after 1st func

1st func arg 1

1st func arg 2

1st func arg 3

2nd func addr (read)

retaddr after 2nd func

2nd func arg 1

2nd func arg 2

2nd func arg 3

conflict

conflict

conflict

66CSED415 – Spring 2025

Solution

• Returning to a code that adjusts esp and ends with ret
• Example: Two pops and a ret (called pop2ret or ppr gadget)

Result: esp+=8 and then return to the address esp points to

CSED415 – Spring 2025

Attack #1-2: Return-Oriented
Programming (ROP)

68CSED415 – Spring 2025

Return-Oriented Programming (ROP)

• Generalized version of the code reuse attack
• Hobav Shacham, “The Geometry of Innocent Flesh on the Bone:

Return-to-libc without Function Calls (on the x86)”, ACM CCS 2007
• https://hovav.net/ucsd/dist/geometry.pdf

https://hovav.net/ucsd/dist/geometry.pdf
https://hovav.net/ucsd/dist/geometry.pdf

69CSED415 – Spring 2025

Chaining functions with ROP gadgets

• Naïve chain

ret_addr

saved ebp

buf[8]

addr_open()

addr_read()addr_read

AAAA

AAAA

AAAA

0 (O_RDONLY)1st arg of read

2nd arg of read gbuf_addr

10403rd arg of read

addr_"flag.txt"

70CSED415 – Spring 2025

Chaining functions with ROP gadgets

• Naïve chain

ret_addr

saved ebp

buf[8]

addr_open()

addr_read()addr_read

AAAA

AAAA

AAAA

0 (O_RDONLY)1st arg of read

2nd arg of read gbuf_addr

10403rd arg of read

• ROP chain (x86)

ret_addr

saved ebp

buf[8]

addr_open()

rop gadgetaddr_pop2ret

AAAA

AAAA

AAAA

0 (O_RDONLY)

addr_read addr_read()

fd (3)1st arg of read

???

2nd arg of read gbuf_addr

3rd arg of read 1040

addr_"flag.txt" addr_"flag.txt"

71CSED415 – Spring 2025

Chaining functions with ROP gadgets

• ROP chain (x86)

ret_addr

saved ebp

buf[8]

addr_open()

rop gadgetaddr_pop2ret

AAAA

AAAA

AAAA

0 (O_RDONLY)

addr_read addr_read()

fd (3)1st arg of read

???

2nd arg of read gbuf_addr

(== pop eip)

3rd arg of read 1040

addr_"flag.txt"

EIP

ESP

72CSED415 – Spring 2025

Chaining functions with ROP gadgets

• ROP chain (x86)

(fast-forwarded to open’s ret) ret_addr

saved ebp

buf[8]

addr_open()

rop gadgetaddr_pop2ret

AAAA

AAAA

AAAA

0 (O_RDONLY)

addr_read addr_read()

fd (3)1st arg of read

???

2nd arg of read gbuf_addr

3rd arg of read 1040

addr_"flag.txt"

ESP

(== pop eip)EIP

73CSED415 – Spring 2025

Chaining functions with ROP gadgets

• ROP chain (x86)

(esp += 4)

ret_addr

saved ebp

buf[8]

addr_open()

rop gadgetaddr_pop2ret

AAAA

AAAA

AAAA

0 (O_RDONLY)

addr_read addr_read()

fd (3)1st arg of read

???

2nd arg of read gbuf_addr

3rd arg of read 1040

addr_"flag.txt"ESP

EIP

74CSED415 – Spring 2025

Chaining functions with ROP gadgets

• ROP chain (x86)

(esp += 4)

ret_addr

saved ebp

buf[8]

addr_open()

rop gadgetaddr_pop2ret

AAAA

AAAA

AAAA

0 (O_RDONLY)

addr_read addr_read()

fd (3)1st arg of read

???

2nd arg of read gbuf_addr

3rd arg of read 1040

addr_"flag.txt"

ESP

EIP (esp += 4)

75CSED415 – Spring 2025

Chaining functions with ROP gadgets

• ROP chain (x86)

ret_addr

saved ebp

buf[8]

addr_open()

rop gadgetaddr_pop2ret

AAAA

AAAA

AAAA

0 (O_RDONLY)

addr_read addr_read()

fd (3)1st arg of read

???

2nd arg of read gbuf_addr

3rd arg of read 1040

addr_"flag.txt"

ESP

EIP

Thanks to two pops,
esp points to addr_read!

76CSED415 – Spring 2025

Chaining functions with ROP gadgets

• ROP chain (x86)

ret_addr

saved ebp

buf[8]

addr_open()

rop gadgetaddr_pop2ret

AAAA

AAAA

AAAA

0 (O_RDONLY)

addr_read addr_read()

fd (3)1st arg of read

2nd arg of read gbuf_addr

3rd arg of read 1040

addr_"flag.txt"

ESP

rop_gadgetaddr_pop3ret
We can further chain more functions

by returning to pop; pop; pop; ret;

(Three pops move esp down by 12 bytes)

77CSED415 – Spring 2025

Questions

• Where are the ROP gadgets?
• pop; ret;
• pop; pop; ret;
• pop; pop; pop; ret;
• …

• How do we find them?

Next week’s topic!

78CSED415 – Spring 2025

Coming up next

• Attack, defense, attack, defense, … (continued)

CSED415 – Spring 2025

Questions?

