
Seulbae Kim

CSED415: Computer Security
Spring 2025

Lec 09: Cryptography (1)

2CSED415 – Spring 2025

Administrivia

• Lab 02 deadline is approaching
• Due: Friday, March 21
• Attend office hours for help!

CSED415 – Spring 2025

Cryptography –
Definitions and Setting

4CSED415 – Spring 2025

What is cryptography?

• Definition:
• A means to enable parties to maintain privacy of the information they

send to each other, even in the presence of an adversary with access
to the communication channel

• Cryptography enables secure communication over insecure
channels

5CSED415 – Spring 2025

Main characters

• Alice and Bob: Two people who want to exchange messages
over an insecure communication channel
• Eve: An eavesdropper who can read any data on the channel
• Mallory: A malicious adversary who can read and also modify

any data on the channel

6CSED415 – Spring 2025

Cryptographic scenarios

• Alice & Bob against Eve

• Alice & Bob against Mallory

Love you Bob! Love you Bob!

Love you Bob! Hate you Bob!

Oh, she said “Love you Bob!”
(Eavesdrops on the messages)

Meh, I’m jealous.
(Intercepts and alters the messages)

7CSED415 – Spring 2025

Goal: Preserving CI + A

• Three primary objectives of cryptography
• Confidentiality: Ensuring that only authorized parties can access the

contents of messages
• Integrity: Guaranteeing that messages remain unaltered during

transmission
• Authenticity: Confirming the sender’s identity to verify that the

message truly comes from the claimed source

8CSED415 – Spring 2025

Keys: The key to cryptography

• Keys control both the encryption and decryption
• Two key models:
• Symmetric key model

• Alice and Bob share the same key
• Asymmetric key model

• Each user has a secret key and a public key
• Public key is shared to anyone
• Secret key is kept confidential

9CSED415 – Spring 2025

Kerckhoff’s principle

• “The security of a cryptosystem should not rely on the secrecy
of its mechanism”
• Cryptosystem should remain secure even when an attacker knows

all internal details of the algorithm
• The key should be the only thing that must be kept secret
• Encourages the “Open Design” principle (ref: Lecture 02)

• Security through obscurity is discouraged

We assume that an attacker knows
everything except the secret key

10CSED415 – Spring 2025

Terms and notations

• Plaintext 𝑚: Original message
• Ciphertext 𝑐: Encrypted message
• Keys: An encryption key (𝑘!) and decryption key (𝑘")
• Encryption 𝐸(𝑘! , 𝑚): Process of generating 𝑐 from 𝑚
• Decryption 𝐷(𝑘" , 𝑐): Process of generating 𝑚 from 𝑐

Encryption
𝐸(𝑘! , 𝑚)

Plaintext
𝑚

Ciphertext
𝑐

Decryption
𝐷(𝑘" , 𝑐)

Plaintext
𝑚

11CSED415 – Spring 2025

Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication
Code (MAC) • Digital signature

CSED415 – Spring 2025

Classical Ciphers

13CSED415 – Spring 2025

Caesar cipher (58 BC)

• A basic substitution cipher:
• Replaces each symbol with another symbol

• Algorithm
• Key 𝑘: An integer within the range [0:25]
• 𝐸(𝑘,𝑚): Substitutes each letter in 𝑚 with the letter that is

 𝑘 positions forward in the alphabet
• 𝐷(𝑘, 𝑐): Substitutes each letter in 𝑐 with the letter that is

 𝑘 positions backward in the alphabet

14CSED415 – Spring 2025

Caesar cipher

• Example
• 𝑘 = 3
• 𝑚 = HELLO WORLD
• 𝐸(𝑘,𝑚)

• H à K
• E à H
• L à O
• …

• 𝑐 becomes KHOOR ZRUOG

𝒎 𝒄
A D
B E
C F
D G
E H
F I
G J
H K
I L
J M
K N
L O
M P

𝒎 𝒄
N Q
O R
P S
Q T
R U
S V
T W
U X
V Y
W Z
X A
Y B
Z C

Substitution table

15CSED415 – Spring 2025

Cryptanalysis of Caesar cipher

• Setting
• Eve can see 𝑐 = ORYH BRX ERE
• Eve doesn’t know 𝑘

• Possible attacks (1)
• Brute-force attack: Try decrypting with all 26 possible keys

k=0 m=ORYH BRX ERE
k=1 m=NQXG AQW DQD
k=2 m=MPWF ZPV CPC
k=3 m=LOVE YOU BOB
k=4 m=KNUD XNT ANA
k=5 m=JMTC WMS ZMZ
k=6 m=ILSB VLR YLY
k=7 m=HKRA UKQ XKX

k=8 m=GJQZ TJP WJW
k=9 m=FIPY SIO VIV
k=10 m=EHOX RHN UHU
k=11 m=DGNW QGM TGT
k=12 m=CFMV PFL SFS
k=13 m=BELU OEK RER
k=14 m=ADKT NDJ QDQ
k=15 m=ZCJS MCI PCP

k=16 m=YBIR LBH OBO
k=17 m=XAHQ KAG NAN
k=18 m=WZGP JZF MZM
k=19 m=VYFO IYE LYL
k=20 m=UXEN HXD KXK
k=21 m=TWDM GWC JWJ
k=22 m=SVCL FVB IVI
k=23 m=RUBK EUA HUH

k=24 m=QTAJ DTZ GTG
k=25 m=PSZI CSY FSF

16CSED415 – Spring 2025

Cryptanalysis of Caesar cipher

• Setting
• Eve can see 𝑐 = ORYH BRX ERE
• Eve doesn’t know 𝑘

• Possible attacks (2)
• Chosen-plaintext attack: Eve can choose arbitrary plaintexts and

obtain their corresponding ciphertexts
• e.g., by tricking Alice into encrypting 𝑚 that Eve chose

• Eve chooses 𝑚 = ABCD and receives 𝑐 = DEFG
• Eve can readily deduce 𝑘 = 3

17CSED415 – Spring 2025

Rail Fence cipher

• A simple permutation cipher
• Permutation cipher encrypts 𝑚 by rearranging the letter order,

without altering the actual letters used

• Scheme
• Key 𝑘: An integer smaller than the length of plaintext 𝑚
• 𝐸(𝑘,𝑚):

• Write the first letter of the plaintext
• Write the following letters downwards diagonally for 𝑘 − 1 letters, then write

upwards diagonally for 𝑘 − 1 letters
• Repeat until the whole plaintext is written out

18CSED415 – Spring 2025

Rail Fence cipher

• Example
• 𝑘 = 3 (3 rails)
• 𝑚 = HELLO WORLD
• 𝐸(𝑘,𝑚):

H...O...L.
.E.L.W.R.D
..L...O... à 𝑐 becomes HOL ELWRD LO

19CSED415 – Spring 2025

Cryptanalysis of Rail Fence cipher

• Vulnerable to brute-force attacks
• 𝑘 is always smaller than the length of 𝑚
• An attacker can try decrypting 𝑐 with all possible 𝑘’s

• Vulnerable to exhaustive permutations (i.e., rearrangements)
• 𝑐 is a permutation of 𝑚

• i.e., 𝑐 is obtained by reordering 𝑚
• Therefore, 𝑚 is a permutation of 𝑐
• An attacker can try all permutations of 𝑐 to obtain 𝑚

20CSED415 – Spring 2025

Classical ciphers are considered weak

• Basic substitution cipher (S) and permutation cipher (P) are
considered insecure
• Reasons:

• Letters in a natural language (e.g., English) are not uniformly distributed
• Prior knowledge of letter frequencies (e.g., most frequent: e) can be used

for cryptanalysis against S or P ciphers

What if we combine S with P?
à Transition into modern cryptography

CSED415 – Spring 2025

Symmetric Cryptography
(Shared key Scheme)

22CSED415 – Spring 2025

Symmetric key cryptography

• A symmetric encryption scheme consists of:
• The key generation algorithm: Generates 𝑘 = 𝑘! = 𝑘" (symmetric!)
• The encryption algorithm: 𝑐 = 𝐸(𝑘,𝑚)
• The decryption algorithm: 𝑚 = 𝐷 𝑘, 𝑐

Plaintext
𝑚

Encryption
𝐸(𝑘,𝑚)

Key
𝑘

Key
𝑘

Decryption
𝐷(𝑘, 𝑐)

Plaintext
𝑚

Ciphertext
𝑐

Insecure channel

23CSED415 – Spring 2025

Symmetric key cryptography

• Required properties
• Correctness

• 𝐷(𝑘, 𝐸(𝑘,𝑚)) = 𝑚 should hold for all 𝑘 and 𝑚
• Confidentiality

• 𝑐 should not give an attacker any additional information about 𝑚

Plaintext
𝑚

Encryption
𝐸(𝑘,𝑚)

Key
𝑘

Key
𝑘

Decryption
𝐷(𝑘, 𝑐)

Plaintext
𝑚

Ciphertext
𝑐

Insecure channel

24CSED415 – Spring 2025

One-time Pad (OTP)

• Scheme
• Key 𝑘: Randomly selected bitstring of length 𝑛

• 𝑛: length of the plaintext 𝑚
• 𝐸 𝑘,𝑚 = 𝑘 ⊕𝑚: Bitwise XOR 𝑘 and 𝑚
• 𝐷 𝑘, 𝑐 = 𝑘 ⊕ 𝑐: Bitwise XOR 𝑘 and 𝑐

0⊕ 0 = 0
0⊕ 1 = 1
1⊕ 0 = 1
1⊕ 1 = 0

𝑥 ⊕ 0 = 𝑥
𝑥 ⊕ 𝑥 = 0

 𝑥 ⊕ 𝑦 = 𝑦⊕ 𝑥
𝑥 ⊕ 𝑦 ⊕ 𝑥 = 𝑦

Review: XOR (⊕)

25CSED415 – Spring 2025

One-time Pad (OTP)

• Example
• 𝑚 = OMW (== bitstring 01001111	01001101	01011001)

• 𝑛 = 24
• 𝑘 = 00111101	01101010	11001101

• Generated at random, shared between Alice and Bob

26CSED415 – Spring 2025

One-time Pad (OTP)

• Example
• Encryption (Alice)

• Alice transmits 𝑐 to Bob

𝒎 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1

𝒄 0 1 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0

𝒌 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 1
⊕ ⊕

27CSED415 – Spring 2025

One-time Pad (OTP)

• Example
• Decryption (Bob)

• Bob retrieves 𝑚 = 01001111 01001101 01011001 = OMW

⊕ ⊕

𝒎 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1

𝒄 0 1 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0

𝒌 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 1

28CSED415 – Spring 2025

One-time Pad (OTP)

• Evaluation: Correctness
• Cryptographic algorithm is correct if 𝐷 𝑘, 𝐸 𝑘,𝑚 = 𝑚

𝐸 𝑘,𝑚 = 𝑘 ⊕𝑚

𝐷 𝑘, 𝐸 𝑘,𝑚 = 𝐷(𝑘, 𝑘 ⊕𝑚)
 = 𝑘 ⊕ 𝑘⊕𝑚

 = 𝑚

Thus, OTP is correct. ∎

⋯ Definition of 𝐸

⋯ Substitution
⋯ Definition of 𝐷
⋯ Property of XOR

How do we evaluate the security (i.e., confidentiality)?

29CSED415 – Spring 2025

Theorem: Shannon’s perfect secrecy (1949)

• An encryption scheme is perfectly secure
if for every ciphertext 𝑐 and messages 𝑚1 and 𝑚2,

• 𝒦 is a random variable that is uniformly distributed over the key
space 𝑘 ∈ 0, 1 , (a bitstring of length 𝑛)

• In plain English, even if an attacker has infinite time and
computational powers in the world, he or she cannot crack
your ciphertext if your scheme is Shannon-secure

𝑃𝑟𝑜𝑏 𝐸 𝒦,𝑚- = 𝑐 = 𝑃𝑟𝑜𝑏[𝐸 𝒦,𝑚. = 𝑐]

30CSED415 – Spring 2025

OTP ensures perfect secrecy

• Theorem

• Proof
• Fix any ciphertext 𝑐 ∈ 0,1 , (i.e., a bitstring of length 𝑛)
• For every 𝑚, 𝑃𝑟𝑜𝑏[𝐸 𝑘,𝑚 = 𝑐] = 𝑃𝑟𝑜𝑏[𝑘 = 𝑚⊕ 𝑐] = 2/,

• Constraint: For every new message 𝑚, a new key 𝑘 is generated

∀𝑐, ∀𝑚/, ∀𝑚0

𝑃𝑟𝑜𝑏 𝐸 𝑘,𝑚/ = 𝑐 = 𝑃𝑟𝑜𝑏[𝐸 𝑘,𝑚0 = 𝑐]

31CSED415 – Spring 2025

OTP ensures perfect secrecy

• Example
• 𝑚 = SEE YOU AT 8PM TOMORROW
• 𝑐 = 001010001…
• Attacker tries all possible 𝑘 ∈ 0,1 , and decrypt the given 𝑐

• What the attacker gets:

SEE YOU AT 2PM TOMORROW
EAT HIM BY 4PM TOMORROW
THE CAT IN THE HOSPITAL
WAS JIM AT THE VINEYARD

...
à Can NEVER guess the correct 𝑚

32CSED415 – Spring 2025

Why not use OTP everywhere?

• Practical limitations exist
• Key generation: Each 𝑘 should be used only once

• 𝑘 needs to be randomly generated for each message (expensive)
• Key management: 𝑘 needs to be as long as 𝑚

• Storage complexity increases for longer 𝑚
• Key distribution: 𝑘 needs to be shared

• 𝑛-bit 𝑘 needs to be shared securely first before we can send 𝑐 securely

OTP is impractical for real-world usage

33CSED415 – Spring 2025

Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication
Code (MAC) • Digital signature

✅

34CSED415 – Spring 2025

Block ciphers

• A scheme consisting of encode/decode algorithms
for a fixed-sized block of bits

Encryption
𝐸(𝑘,𝑚#)

Key
𝑘

𝑐$ 𝑐% 𝑐& 𝑐'

𝑚$ 𝑚% 𝑚& 𝑚'𝑚 =

Decryption
𝐷(𝑘, 𝑐#)

Key
𝑘

𝑚$ 𝑚% 𝑚& 𝑚'

𝑐$ 𝑐% 𝑐& 𝑐'𝑐 =

35CSED415 – Spring 2025

Correctness requirement of block ciphers

• 𝐸: A permutation (bijective function) and 𝐷: 𝐸#$ (inverse of 𝐸)
• Every input is uniquely mapped to a single output

• If 𝐸 is not bijective, there may exist 𝑚- and 𝑚. such that

• Then, we cannot decode 𝑐 and obtain a unique plaintext

00
01
10
11

00
01
10
11

Bijective function

00
01
10
11

00
01
10
11

Non-bijective function

𝐸(𝑘,𝑚1) = 𝐸(𝑘,𝑚2) = 𝑐

36CSED415 – Spring 2025

DES (Data Encryption Standard) (1975)

• Setting
• Key size: 56 bits
• Block size: 64 bits

• In: 64-bit plaintext
• Out: 64-bit ciphertext

𝑚# (64-bit plaintext)

Key
𝑘

Round
key

generator

Initial permutation

Final permutation

Round 1

Round 2

Round 16
(56-bit key)

𝑐# (64-bit ciphertext)

DES

…

(48-bit)

𝑘$

𝑘%

𝑘$(

(48-bit)

(48-bit)

𝑟$

𝑟$(

𝑟)

37CSED415 – Spring 2025

DES (Data Encryption Standard) (1975)

• Initial permutation (IP)
• Rearranges the bits of 𝑚 (diffusion)

• Final permutation
• Inverse of the IP

𝑚# (64-bit plaintext)

Key
𝑘

Round
key

generator

Initial permutation

Final permutation

Round 1

Round 2

Round 16
(56-bit key)

𝑐# (64-bit ciphertext)

DES

…

(48-bit)

𝑘$

𝑘%

𝑘$(

(48-bit)

(48-bit)

1 2 8 40 58 64

1 2 8 40 58 64

25

25

1 2 8 40 58 64

1 2 8 40 58 64

25

25

… … … …

… … … …

… … … …

… … … …

𝑟$

𝑟$(

𝑟)

38CSED415 – Spring 2025

DES (Data Encryption Standard) (1975)

• DES round 𝑖 𝑚# (64-bit plaintext)

Key
𝑘

Round
key

generator

Initial permutation

Final permutation

Round 1

Round 2

Round 16
(56-bit key)

𝑐# (64-bit ciphertext)

DES

…

(48-bit)

𝑘$

𝑘%

𝑘$(

(48-bit)

(48-bit)

Expansion

S-boxes

P-box

⊕

⊕

𝑘#

Left half (32 bits) Right half (32 bits)

Left half (32 bits) Right half (32 bits)

48 bits

32 bits

48 bits

𝑟$

𝑟$(

𝑟)

𝑟#*$

𝑟#

48 bits

39CSED415 – Spring 2025

DES (Data Encryption Standard) (1975)

• DES round 𝑖 𝑚# (64-bit plaintext)

Key
𝑘

Round
key

generator

Initial permutation

Final permutation

Round 1

Round 2

Round 16
(56-bit key)

𝑐# (64-bit ciphertext)

DES

…

(48-bit)

𝑘$

𝑘%

𝑘$(

(48-bit)

(48-bit)

Expansion

S-boxes

P-box

⊕

⊕

𝑘#

Left half (32 bits) Right half (32 bits)

Left half (32 bits) Right half (32 bits)

48 bits

32 bits

48 bits

𝑟$

𝑟$(

𝑟)

𝑟#*$

𝑟#

48 bits

Note: Combination of substitution (S-Box)
and permutation (P-box) provides an efficient,
yet strong encryption

40CSED415 – Spring 2025

DES (Data Encryption Standard) (1975)

• DES round key (𝑘%) generation 𝑚# (64-bit plaintext)

Key
𝑘

Round
key

generator

Initial permutation

Final permutation

Round 1

Round 2

Round 16
(56-bit key)

𝑐# (64-bit ciphertext)

DES

…

(48-bit)

𝑘$

𝑘%

𝑘$(

(48-bit)

(48-bit)

Circular shift-L

𝑘#

Left half (28 bits) Right half (28 bits)

Left half (28 bits) Right half (28 bits)

28 bits

48 bits

𝑟𝑘#*$

𝑟𝑘#

Circular shift-L

Compression
P-box

28 bits

48 bits

𝑟$

𝑟$(

𝑟)

41CSED415 – Spring 2025

Cryptanalysis of DES

• DES algorithm itself remains unbroken even now
• No algorithmic weakness has been identified yet

• However, DES is considered unsafe due to its small key size
• The entire keyspace of a 56-bit key can be searched within days

on modern computers
• In 1999, a dedicated machine brute-forced DES key in 22 hours

(ref: Lecture 01)
• A replacement cipher was needed

42CSED415 – Spring 2025

Triple-DES (3DES)

• Extends DES by applying DES three times
• Use two keys: 𝑘- and 𝑘. (Key size is 56*2 = 112 bits)
• 3𝐷𝐸𝑆(𝑘-, 𝑘., 𝑚) = 𝐷𝐸𝑆 𝑘., 𝐷𝐸𝑆/- 𝑘-, 𝐷𝐸𝑆 𝑘., 𝑚

• Q) Why perform Enc-Dec-Enc, not Enc-Enc-Enc? Think about it!

• Cryptanalysis
• Underlying encryption algorithm (DES) is the same
• Security: Since key size is larger, brute-force attacks are much more

challenging
• Efficiency: Bad because 3DES requires three DES computations

43CSED415 – Spring 2025

AES (Advanced Encryption Standard) (2001)

• A new encryption standard replacing DES
• 15 algorithms from different countries were submitted to NIST
• Rijndael algorithm by John Daemen and Vincent Rijmen was selected

as the Advanced Encryption Standard

• Setting
• Key size: 128, 192, or 256 bits
• Block size: 128 bits

44CSED415 – Spring 2025

AES (Advanced Encryption Standard) (2001)

• Scheme
• 𝑚0 : A 128-bit block (4x4)
• Repeat multiple rounds of:

• SubBytes: Substitute bytes within block
• ShiftRows: Shift bytes in each row
• MixColumns: Multiply columns
• AddRoundKey: XOR with round key

𝑚# (128-bit plaintext block)

𝑐# (128-bit ciphertext block)

SubBytes

ShiftRows

MixColumns

AddRoundKey

Repeat (R: rounds):
10 Rs for 128-bit keys
12 Rs for 192-bit keys
14 Rs for 256-bit keys

*You do not need to know all details of AES

45CSED415 – Spring 2025

Cryptanalysis of AES

• AES has not been broken
• No algorithmic weakness
• Exhaustive key search is believed to be infeasible

• Nor formally proven, but empirically, no practical attack has been discovered
• 128-bit key is large enough to prevent brute-force attacks

• Stronger and faster than DES/3DES
à AES remains the de facto standard for block ciphers

46CSED415 – Spring 2025

Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication
Code (MAC) • Digital signature

✅
✅

47CSED415 – Spring 2025

Stream Cipher

• Block ciphers split plaintext message into equal-sized blocks
and encrypt each block as a unit
• Overhead is introduced for block-granularity processing

(e.g., need to add padding for messages smaller than the block size)

• Stream ciphers encrypt one bit at a time
• Provide better efficiency in real-time communications

48CSED415 – Spring 2025

Stream cipher – Approach

• Generate a pseudorandom keystream 𝑘𝑠 from 𝑘

• 𝐸(𝑘𝑠,𝑚): Bitwise XOR keystream 𝑘𝑠 with plaintext 𝑚

Keystream
generator

Key
𝑘

Keystream
𝑘𝑠

Keystream
𝑘𝑠 ⊕

Plaintext
𝑚

Ciphertext
𝑐

49CSED415 – Spring 2025

Background: Randomness

• Randomness is essential for symmetric key cryptography
• e.g., Stream cipher requires a random keystream

• If an attacker can predict a random number, many
cryptographic schemes will be broken

• How can we securely generate random numbers?
• Can computers generate random numbers?

50CSED415 – Spring 2025

Background: Randomness

• Entropy: A measure of uncertainty
• High entropy means the outcomes are more unpredictable, which is

desirable in cryptography
• The uniform distribution has the highest entropy

• e.g., Every output of a coin toss is equally likely

• In cryptography, randomness indicates uncertainty

51CSED415 – Spring 2025

Background: Randomness

• Keystream generator scenario
• We want a keystream for stream cipher that attacker cannot guess
• We can generate every bit of 𝑘𝑠 by tossing a fair (50-50) coin
• Attacker cannot feasibly guess 𝑘𝑠 due to high entropy

• “This 𝑘𝑠 is truly random”

• Problem?

How would a computer do this?

52CSED415 – Spring 2025

Background: True randomness

• True randomness requires a physical source of entropy
• A physical coin toss
• Chaotic systems with complex dynamics, e.g., weather patterns
• Atmospheric noise
• Human activity

à Very expensive and slow to generate

Again, how would a computer do this?

53CSED415 – Spring 2025

Background: Pseudo-Random Number Generator

• PRNG: An algorithm that utilizes a small seed of true
randomness to produce outputs that appear random
• Procedure
• Generate a seed from expensive true randomness

• e.g., environmental noise from device drivers, such as keystroke intervals
• Seed a PRNG algorithm
• Generate pseudorandom numbers quickly and cheaply

• PRNG outputs are deterministic, yet computationally
indistinguishable from true random numbers

54CSED415 – Spring 2025

Back to stream cipher…

• Setting

Plaintext
𝑚

Encryption
⊕

Key
𝑘

Decryption
⊕

Plaintext
𝑚

Ciphertext
𝑐

Insecure channel

𝑃𝑅𝑁𝐺(𝑘)

Keystream
𝑘𝑠

Key
𝑘

𝑃𝑅𝑁𝐺(𝑘)

Keystream
𝑘𝑠

seed seed

55CSED415 – Spring 2025

Evaluating stream cipher

• Setting

Plaintext
𝑚

Encryption
⊕

Key
𝑘

Decryption
⊕

Plaintext
𝑚

Ciphertext
𝑐

Insecure channel

𝑃𝑅𝑁𝐺(𝑘)

Keystream
𝑘𝑠

Key
𝑘

𝑃𝑅𝑁𝐺(𝑘)

Keystream
𝑘𝑠

seed seed

• Correctness: Guaranteed, as PRNG is deterministic
• Security: Guaranteed by indistinguishability from

 true randomness

56CSED415 – Spring 2025

Example: Rivest Cipher (RC4) (1987)

• A classical stream cipher
• Generates a continuous keystream 𝑘𝑠 of pseudorandom bytes

from a secret key 𝑘
• Encrypts plaintext 𝑚 by XORing 𝑘𝑠 with 𝑚

• Variable-length key 𝑘: 5 to 256 bytes (let’s assume 256 bytes)
• Each byte of 𝑘 can be accessed via 𝑘[0], 𝑘[1], …, 𝑘[255],

where 𝑘[𝑖] denotes the 𝑖 + 1-th byte of 𝑘

• Consists of a Key Scheduling Algorithm (KSA) and
Pseudo-Random Generation Algorithm (PRGA)

57CSED415 – Spring 2025

Example: Rivest Cipher (RC4) (1987)

• Key scheduling algorithm (KSA):
• Initializes the S-Box array 𝑆
• Given: Key 𝑘 = 𝑘[0], 𝑘[1], …, 𝑘[255]
• Initial S-box array: 𝑆[0] = 0, 𝑆[1] = 1, …, 𝑆[255] = 255

def KSA(k):
 S = list(range(256)) # S = [0, 1, ..., 255]
 j = 0
 for i in range(256):
 j = (j + S[i] + k[i]) % 256 # %: modulo
 S[i], S[j] = S[j], S[i] # swap

 return S

58CSED415 – Spring 2025

Example: Rivest Cipher (RC4) (1987)

• Pseudo-Random Generation Algorithm (PRGA):
• Generates a pseudorandom keystream 𝑘𝑠
• Given: S-box array = 𝑆[0], 𝑆[1], …, 𝑆[255] (initialized by KSA)

def PRGA(m, S):
 i, j = 0
 ks = []
 for l in range(len(m)): # ks should be as large as plaintext
 i = (i + 1) % 256
 j = (j + S[i]) % 256
 S[i], S[j] = S[j], S[i] # swap
 t = (S[i] + S[j]) % 256
 ks[l] = S[t]
 l += 1
 return ks

59CSED415 – Spring 2025

Example: Rivest Cipher (RC4) (1987)

• Encryption:
• Bitwise-XOR 𝑚 with 𝑘𝑠 generated by PRGA

• i.e., 𝑐 = 𝑚⊕ 𝑘𝑠

• Decryption
• Generate 𝑘𝑠 from secret key 𝑘 via KSA and PRGA
• Bitwise-XOR 𝑐 with 𝑘𝑠

• i.e., 𝑚 = 𝑐 ⊕ 𝑘𝑠

60CSED415 – Spring 2025

Example: Rivest Cipher (RC4) (1987)

• Security of RC4
• Many known weaknesses exist

• Key-dependent biases occur in the initial bytes of 𝑘𝑠
• Inferable correlation between keystream and the key
• …

• Despite its efficiency and simplicity, RC4 is no longer recommended
for cryptographic applications
• Secure alternatives: ChaCha20, AES-CTR, …

61CSED415 – Spring 2025

Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication
Code (MAC) • Digital signature

✅
✅
✅

62CSED415 – Spring 2025

Coming up next

• Limitations of symmetric schemes
• Key needs to be securely shared
• Too many keys are needed

• One key for 2 ppl, 3 keys for 3 ppl, 6 keys for 4 ppl, 10 keys for 5 ppl, …

à Asymmetric schemes were introduced

CSED415 – Spring 2025

Questions?

