Lec 09: Cryptography (1)

CSED415: Computer Security
Spring 2025

Seulbae Kim
POSTECH



Administrivia

rPOSTRPCH

* Lab 02 deadline is approaching

* Due: Friday, March 21
* Attend office hours for help!

CSEDA415 — Spring 2025 2



Cryptography —
Definitions and Setting

CCCCCCC — Spring 2025 rPOSTEREPLCH



What is cryptography?
* Definition:
* A means to enable parties to maintain privacy of the information they

send to each other, even in the presence of an adversary with access
to the communication channel

* Cryptography enables secure communication over insecure
channels

CSEDA415 — Spring 2025 4



Main characters

rPOSTERCH

* Alice and Bob: Two people who want to exchange messages
over an insecure communication channel

* Eve: An eavesdropper who can read any data on the channel

* Mallory: A malicious adversary who can read and also modify
any data on the channel

[-¥o¥o

CSEDA415 — Spring 2025 5




Cryptographic scenarios

rPOSTERCH

* Alice & Bob against Eve

g Love you Bob!

* Alice & Bob against Mallory

Love you Bob!
-

Oh, she said “Love you Bob!”
(Eavesdrops on the messages)

Love you Bob! Hate you Bob! cen
—

<y (¥

Meh, I’'m jealous.
(Intercepts and alters the messages)

CSEDA415 — Spring 2025 6




Goal: Preserving Cl + A

rPOSTERCH

* Three primary objectives of cryptography

e Confidentiality: Ensuring that only authorized parties can access the
contents of messages

* Integrity: Guaranteeing that messages remain unaltered during
transmission

* Authenticity: Confirming the sender’s identity to verify that the
message truly comes from the claimed source

CSEDA415 — Spring 2025 7



Keys: The key to cryptography

rPOSTERCH

* Keys control both the encryption and decryption

* Two key models:

* Symmetric key model
* Alice and Bob share the same key

 Asymmetric key model

=0qV&gi+
q(V9QsWioCHt
* Each user has a secret key and a public key S clrelmmnesaradmloe e
9H6 N%6G1k8F>4Ka9&E4kFgllSRiJXH[@#8
* Public key is shared to anyone 024701 26138 s

Y70\EP!UQya$ KB W3
*&7LQeP"

e Secret key is kept confidential

CSEDA415 — Spring 2025 8



Kerckhoff’s principle

rPOSTERCH

* “The security of a cryptosystem should not rely on the secrecy
of its mechanism”

* Cryptosystem should remain secure even when an attacker knows
all internal details of the algorithm

* The key should be the only thing that must be kept secret

* Encourages the “Open Design” principle (ref: Lecture O2)
* Security through obscurity is discouraged

We assume that an attacker knows
everything except the secret key

CSEDA415 — Spring 2025 9



Terms and notations

rPOSTERCH

* Plaintext m: Original message

* Ciphertext c: Encrypted message

* Keys: An encryption key (kr) and decryption key (kp)
* Encryption E(kg, m): Process of generating ¢ from m
* Decryption D(kp, ¢): Process of generating m from ¢

(" ) (" )

Plaintext Encryption Ciphertext Decryption Plaintext
m E(kg,m) C D(kp,c) m

\. J \. J

CSEDA415 — Spring 2025 10



Cryptography roadmap

rPOSTERCH

hem . |
Scheme Symmetric Key Asymmetric Key

Goal

* One Time Pad (OTP)
Confidentiality * Block ciphers (DES, AES)
 Stream ciphers

* ElGamal encryption
* RSA encryption

Integrity o
& Message Authentication . Digital signature

Authentication Code (MAC)

CSED415 — Spring 2025 )



Classical Ciphers

CCCCCCC — Spring 2025 rPOSTEREPLCH



Caesar cipher (58 BC)

rPOSTERCH

* A basic substitution cipher:
* Replaces each symbol with another symbol

* Algorithm
e Key k: An integer within the range [0:25]
* E(k, m): Substitutes each letter in m with the letter that is
k positions forward in the alphabet

* D(k, c): Substitutes each letter in ¢ with the letter that is
k positions backward in the alphabet

CSEDA415 — Spring 2025 13



Caesar cipher

rPOSTERCH

Substitution table

* Example alle Wl e
e k=3 A | D N | Q
B | E O|R

e m=HELLO WORLD c | r > | s
* E(k,m) D|lG||la]T
e H->K E H R U

e E> H F I S|V

G| J T |wW

*L20 H | K U | X
T HERIEAR

e ¢ becomes KHOOR ZRUOG JIM||w]|Z
K | N X | A

L|lo|]|lY]|B

M| P z | C

CSEDA415 — Spring 2025 14




Cryptanalysis of Caesar cipher

rPOSTERCH

* Setting
* Eve can see ¢ = ORYH BRX ERE =
 Eve doesn’t know k ﬂ

* Possible attacks (1)
* Brute-force attack: Try decrypting with all 26 possible keys

k=0 m=0RYH BRX ERE k=8 m=GJQZ TIP WJIW k=16 m=YBIR LBH 0BO k=24 m=QTAJ DTZ GTG
k=1 m=NQXG AQw DQD k=9 m=FIPY SIO VIV k=17 m=XAHQ KAG NAN k=25 m=PSZI CSY FSF
k=2 m=MPWF ZPV CPC k=10 m=EHOX RHN UHU k=18 m=WZGP JZF MZM
k=3 m=LOVE YOU BOB k=11 m=DGNW QGM TGT k=19 m=VYFO IYE LYL
k=4 m=KNUD XNT ANA k=12 m=CFMV PFL SFS k=20 m=UXEN HXD KXK
k=5 m=JMTC WMS ZMZ k=13 m=BELU OEK RER k=21 m=TWDM GWC JWJ]
k=6 m=ILSB VLR YLY k=14 m=ADKT NDJ QDQ k=22 m=SVCL FVB IVI
k=7 m=HKRA UKQ XKX k=15 m=ZCJS MCI PCP k=23 m=RUBK EUA HUH

CSEDA415 — Spring 2025 15



Cryptanalysis of Caesar cipher

rPOSTERCH

* Setting
* Eve can see ¢ = ORYH BRX ERE =
 Eve doesn’t know k ﬂ

* Possible attacks (2)

* Chosen-plaintext attack: Eve can choose arbitrary plaintexts and
obtain their corresponding ciphertexts
* e.g., by tricking Alice into encrypting m that Eve chose

e Fve chooses m = ABCD and receives ¢ = DEFG
* Eve can readily deduce k = 3

CSEDA415 — Spring 2025 16



Rail Fence cipher

rPOSTERCH

* A simple permutation cipher

* Permutation cipher encrypts m by rearranging the letter order,
without altering the actual letters used

e Scheme

* Key k: An integer smaller than the length of plaintext m
e E(k,m):
* Write the first letter of the plaintext

* Write the following letters downwards diagonally for k — 1 letters, then write
upwards diagonally for k — 1 letters

* Repeat until the whole plaintext is written out

CSEDA415 — Spring 2025 17



Rail Fence cipher

rPOSTERCH

* Example
e k = 3 (3 rails)
e m=HELLO WORLD
e E(k,m):

H...O...L.
.E.L.W.R.D

VA

CSEDA415 — Spring 2025 18

- ¢ becomes HOL ELWRD LO



Cryptanalysis of Rail Fence cipher

rPOSTERCH

* Vulnerable to brute-force attacks

e k is always smaller than the length of m
e An attacker can try decrypting ¢ with all possible k’s

* Vulnerable to exhaustive permutations (i.e., rearrangements)

* C is a permutation of m
* j.e., c is obtained by reordering m

 Therefore, m is a permutation of ¢
* An attacker can try all permutations of ¢ to obtain m

CSEDA415 — Spring 2025 19



Classical ciphers are considered weak

* Basic substitution cipher (S) and permutation cipher (P) are

considered insecure

* Reasons:
* Letters in a natural language (e.g., English) are not uniformly distributed

* Prior knowledge of letter frequencies (e.g., most frequent: e) can be used
for cryptanalysis against S or P ciphers

What if we combine S with P?
- Transition into modern cryptography

CSEDA415 — Spring 2025 20



Symmetric Cryptography
(Shared key Scheme)

CCCCCCC — Spring 2025 rPOSTEREPLCH



Symmetric key cryptography

* A symmetric encryption scheme consists of:

a

Plaintext
m

Key
k

|

4.[

Encryption ]

( Insecure channel \

E(k,m) |

CSEDA415 — Spring 2025

>

Ciphertext

Key
k

|

C

g%

1

Decryption
D(k,c)

ne key generation algorithm: Generates k = kg = kp (symmetric!)
Ne encryption algorithm: ¢ = E(k, m)
ne decryption algorithm: m = D(k, c¢)

=

Plaintext
m

rPOSTERCH

22



Symmetric key cryptography

* Required properties

e Correctness
* D(k,E(k,m)) = m should hold for all k and m

e Confidentiality
* ¢ should not give an attacker any additional information about m

Plaintext
m

Key
k

|

4.[

Encryption ]

( Insecure channel \

E(k,m) |

CSEDA415 — Spring 2025

>

Ciphertext

C

Key
k

|

g

1

Decryption
D(k,c)

=

Plaintext
m

rPOSTERCH

23



One-time Pad (OTP)

e Scheme

* Key k: Randomly selected bitstring of length n
* n: length of the plaintext m

« E(k,m) = k @ m: Bitwise XOR k and m
* D(k,c) =k  c: Bitwise XOR k and ¢

CSEDA415 — Spring 2025

Review: XOR (D)

0p0=0
0Opl1=1
10=1
191=0

xP0=x

xPx=0

xDy=yDx
xBy)Bx=y

rPOSTERCH

24



One-time Pad (OTP)

rPOSTERCH

* Example

* m = OMW (== bitstring 01001111 01001101 01011001)
n =24
e k=001111010110101011001101

 Generated at random, shared between Alice and Bob

CSEDA415 — Spring 2025 25



One-time Pad (OTP)

rPOSTERCH

* Example

* Encryption (Alice)

m01/0/0/1}1/{1(1/0|1|{0]0/1(12/0|1|0]1(0(1/1|0|0/1

DD DD DD DODDDDD DD DDDDDD DD DD

ki0/j0|1|1|1|1/0(2/0|1|1/0(2(0|2]|0|1]|1(0|0|1]|1|0]1

BEEEEEEEEEEEEEEEEEEEEER
clof1]1]1]ofo[1]eo[o]1[o]o[2[1]1][2]o]o]2]01]0]0

e Alice transmits ¢ to Bob

26

CSEDA415 — Spring 2025



One-time Pad (OTP)

rPOSTERCH

* Example

* Decryption (Bob)

cl0|1|1|1|0{0(1/0|0|0|1/0(O0|1]|1|1|1(0(O0|2|0|1]|0]|0

DD DD DD DODDDDD DD DDDDDD DD DD

ki0/j0|1|1|1|1/0(2/0|1|1/0(2(0|2]|0|1]|1(0|0|1]|1|0]1

BEEREEREEEREEEEEEEEEEEEEEEE
mlo[1]ofo[1]1]a]1]o]1]0fe[1]1]0]1]0]2]0]2]2]0]0]1

01001111 01001101 01011001 = OMW

e Bob retrieves m

27

CSEDA415 — Spring 2025



One-time Pad (OTP)

e Evaluation: Correctness

- Cryptographic algorithm is correct if D(k, E(k,m)) = m

E(lkkm)=k&®m
D(k,E(k,m)) = D(k,k @® m)
=k Kkdm) -

= m

Thus, OTP is correct. =

- Definition of E

- Substitution

Definition of D

- Property of XOR

rPOSTERCH

How do we evaluate the security (i.e., confidentiality)?

CSEDA415 — Spring 2025

28



Theorem: Shannon’s perfect secrecy (1949)

rPOSTERCH

* An encryption scheme is perfectly secure
if for every ciphertext ¢ and messages ml and m2,

Prob|E(¥,m,) = c] = Prob[E(K,m,) = c]

K is a random variable that is uniformly distributed over the key
space k € {0, 1}" (a bitstring of length n)

* In plain English, even if an attacker has infinite time and
computational powers in the world, he or she cannot crack
your ciphertext if your scheme is Shannon-secure

CSEDA415 — Spring 2025 29



OTP ensures perfect secrecy

rPOSTERCH

e Theorem
Ve, le,‘v’mz

Prob|E(k,m;) = c] = Prob[E(k,m,) = ]

* Proof
* Fix any ciphertext ¢ € {0,1}" (i.e., a bitstring of length n)
« For every m, Prob[E(k,m) = c|=Problk =m @ c]=2"
* Constraint: For every new message m, a new key k is generated

CSEDA415 — Spring 2025 30



OTP ensures perfect secrecy

rPOSTERCH

* Example

* m=SEE YOU AT 8PM TOMORROW
e ¢ =001010001 ...

» Attacker tries all possible k € {0,1}" and decrypt the given ¢
* What the attacker gets:

SEE YOU AT 2PM TOMORROW
EAT HIM BY 4PM TOMORROW
THE CAT IN THE HOSPITAL
WAS JIM AT THE VINEYARD - Can NEVER guess the correct m

CSEDA415 — Spring 2025 31



Why not use OTP everywhere?

rPOSTERCH

 Practical limitations exist

* Key generation: Each k should be used only once
* k needs to be randomly generated for each message (expensive)

 Key management: k needs to be as long asm
* Storage complexity increases for longer m

* Key distribution: k needs to be shared
* n-bit k needs to be shared securely first before we can send ¢ securely

OTP is impractical for real-world usage

CSEDA415 — Spring 2025 32



Cryptography roadmap

rPOSTERCH

Scheme
Goal

Symmetric Key

Asymmetric Key

Confidentiality

One Time Pad (OTP)
* Block ciphers (DES, AES)
 Stream ciphers

ElGamal encryption
RSA encryption

Integrity
&
Authentication

* Message Authentication
Code (MAC)

Digital signature

CSEDA415 — Spring 2025

33



Block ciphers

* A scheme consisting of encode/decode algorithms

for a fixed-sized block of bits

PR

Key

ﬁ

CSEDA415 — Spring 2025

Encryption
E(k, mi)

.

g

Decryption
D (k; Ci)

rPOSTERCH

Key

o lealaey

34



Correctness requirement of block ciphers

rPOSTERCH

 E: A permutation (bijective function) and D: E~! (inverse of E)
* Every input is uniquely mapped to a single output

00 00 00 00
01 01 01 01
10 10 10 10
11 11 11 11
Bijective function Non-bijective function

* If E'is not bijective, there may exist m; and m, such that
E(k,ml) =E(k,m2) =c
* Then, we cannot decode ¢ and obtain a unigue plaintext

CSEDA415 — Spring 2025 35



DES (Data Encryption Standard) (1975)

* Setting
* Key size: bo bits
e Block size: 64 bits
* |In: 64-bit plaintext

e Out: 64-bit ciphertext

CSEDA415 — Spring 2025

rPOSTECH
(64-bit plaintext)
(1 . DES )
‘ Initial permutation ‘
Tod
I Round 1
T
Round Ke
Round 2 key — ky
generator
(56-bit key)
IRound16
7”16l
‘ Final permutation ‘
. | J

(64-bit ciphertext)

36



DES (Data Encryption Standard) (1975)

* |nitial permutation (IP) (64-bit plaintext)
 Rearranges the bits of m (diffusion) ¥ DES )
Initial permutation
12 8 .. 25 .. 40 .. b8 ..64 l
| | | — N To
i/; — j I Round 1

- i h - o
12 8 .. 25 .. 40 Round 2 EZ;

* Final permutation
* Inverse of the IP

IRound16

generator

(&1 6l

Final permutation

12 8 ... 25 .. 40
pra——

H N H H
12 8 ... 25 .. 40

CSEDA415 — Spring 2025

(64-bit ciphertext)

rPOSTERCH

Key
k

(56-bit key)

37



DES (Data Encryption Standard) (1975)

rPOSTE2LCH
. _ A-bit plai
° DES round [ (64-bit plaintext)
r._. | Left half 32 bits) | Right half (32 bits) ff L DES )
I ‘ Initial permutation ‘
i 1
/ Expansion \ ol k,
} 48 bits Round 1 <zgTem
D < ki iy k, | Round o
| 48 bits | 48 bits Round 2 <7l key  fer—
\ S-boxes / . generator
/ ki (56-bit key)
32 bits Round 16
v (48-bit)
P-box T16]
l ‘ Final permutation ‘
> D

A 4

1

T; Left half (32 bits)

Right half (32 bits)

CSEDA415 — Spring 2025

- | J

(64-bit ciphertext)

38



DES (Data Encryption Standard) (1975)

| 48 bits

\ S-boxes /

| 32 bits
P-box

CSEDA415 — Spring 2025

rPOSTERCH

Note: Combination of substitution (S-Box)
and permutation (P-box) provides an efficient,
yet strong encryption

39



DES (Data Encryption Standard) (1975)

rPOSTERCH

Key
k

(56-bit key)

. _ A-bit plai
* DES round key (k;) generation (64-bit plaintext)
rk;_, | Left half (28 bits) | Right half (28 bits) f Y DES )
I Initial permutation ‘
Circular shift-L Circular shift-L 7‘01 k,
I Round 1 m
T
Ewe— k, Round
Compression l (4sbity  key ¢
P-box . generator
K16
48 bits | Round 16 I‘M
> k; 7”16l
48 bits | Finail permutation \
28 bits 28 bits \ | )

CSEDA415 — Spring 2025



Cryptanalysis of DES
* DES algorithm itself remains unbroken even now
* No algorithmic weakness has been identitied yet

* However, DES is considered unsafe due to its small key size

* The entire keyspace of a bo-bit key can be searched within days
on modern computers

* INn 1999, a dedicated machine brute-forced DES key in 22 hours
(ref: Lecture O1)

* A replacement cipher was needed

CSEDA415 — Spring 2025 41



Triple-DES (3DES)

rPOSTERCH

* Extends DES by applying DES three times
e Use two keys: k, and k, (Key size is 56*2 = 112 bits)

+ 3DES(ky, k,,m) = DES (kz,DES‘l(kl,DES(kz,m)))
* Q) Why perform Enc-Dec-Enc, not Enc-Enc-Enc? Think about it!

* Cryptanalysis
* Underlying encryption algorithm (DES) is the same
e Security: Since key size is larger, brute-force attacks are much more

challenging
» Efficiency: Bad because 3DES requires three DES computations

CSEDA415 — Spring 2025 42



AES (Advanced Encryption Standard) (2001)

rPOSTERCH

* A new encryption standard replacing DES

* 15 algorithms from different countries were submitted to NIST

* Rijndael algorithm by John Daemen and Vincent Rijmen was selected
as the Advanced Encryption Standard

* Setting
* Key size: 123, 192, or 256 bits
* Block size: 128 bits

CSEDA415 — Spring 2025 43



AES (Advanced Encryption Standard) (2001)

rPOSTERCH

* Scheme
* m;. A 128-bit block (4x4)
* Repeat multiple rounds of:

(128-bit plaintext block)

. SubBytes: Substitute bytes within block L_suBytes | | oo ieat :rounds)

- ShiftRows: Shift bytes in each row | shiftRows | |10Rsfor128-bitkeys
_ . | 12 Rs for 192-bit keys

« MixColumns: Multiply columns | MixColumns | |14 Rsfor 256-bit keys

« AddRoundKey: XOR with round key | AddROLIJndKey |

(128-bit ciphertext block)

*You do not need to know all details of AES

CSEDA415 — Spring 2025 44



Cryptanalysis of AES

rPOSTERCH

* AES has not been broken

* No algorithmic weakness

* Exhaustive key search is believed to be infeasible
* Nor formally proven, but empirically, no practical attack has been discovered
* 128-bit key is large enough to prevent brute-force attacks

* Stronger and faster than DES/3DES
- AES remains the de facto standard for block ciphers

CSEDA415 — Spring 2025 45



Cryptography roadmap

rPOSTERCH

Scheme
Goal

Symmetric Key

Asymmetric Key

Confidentiality

One Time Pad (OTP)
Block ciphers (DES, AES)
 Stream ciphers

ElGamal encryption
RSA encryption

Integrity
&
Authentication

* Message Authentication
Code (MAC)

Digital signature

CSEDA415 — Spring 2025

46



Stream Cipher

rPOSTERCH

* Block ciphers split plaintext message into equal-sized blocks
and encrypt each block as a unit

* Overhead is introduced for block-granularity processing
(e.g., need to add padding for messages smaller than the block size)

* Stream ciphers encrypt one bit at a time
* Provide better efficiency in real-time communications

CSEDA415 — Spring 2025 47



Stream cipher — Approach

* Generate a pseudorandom keystream ks from k

* E(ks,m): Bitwise XOR keystream ks with plaintext m

CSEDA415 — Spring 2025

Key
k

4[

Keystream
generator

-

Keystream
ks

Plaintext

Keystream
ks

1
- @

Ciphertext
C

rPOSTERCH

48



Background: Randomness

rPOSTERCH

* Randomness is essential for symmetric key cryptography
* e.g., Stream cipher requires a random keystream

* If an attacker can predict a random number, many
cryptographic schemes will be broken

* How can we securely generate random numbers?
 Can computers generate random numbers?

CSEDA415 — Spring 2025 49



Background: Randomness
* Entropy: A measure of uncertainty

* High entropy means the outcomes are more unpredictable, which is
desirable in cryptography

* The uniform distribution has the highest entropy
* e.g., BEvery output of a coin toss is equally likely

* In cryptography, randomness indicates uncertainty

CSEDA415 — Spring 2025 50



Background: Randomness

rPOSTERCH

* Keystream generator scenario

* We want a keystream for stream cipher that attacker cannot guess
 We can generate every bit of ks by tossing a fair (50-50) coin

e Attacker cannot feasibly guess ks due to high entropy
e “This ks is truly random”

e Problem?

How would a computer do this?

CSEDA415 — Spring 2025 51



Background: True randomness

rPOSTERCH

* True randomness requires a physical source of entropy
* A physical coin toss
* Chaotic systems with complex dynamics, e.g., weather patterns
* Atmospheric noise
* Human activity

- Very expensive and slow to generate

Again, how would a computer do this?

CSEDA415 — Spring 2025 52



Background: Pseudo-Random Number Generator

rPOSTERCH

* PRNG: An algorithm that utilizes a small seed of true
randomness to produce outputs that appear random

e Procedure

* Generate a seed from expensive true randomness
* e.g., environmental noise from device drivers, such as keystroke intervals

* Seed a PRNG algorithm
* Generate pseudorandom numbers quickly and cheaply

* PRNG outputs are deterministic, yet computationally
indistinguishable from true random numbers

CSEDA415 — Spring 2025 53



Back to stream cipher...

rPOSTERCH

* Setting

a

Key
k

lseed

[

PRNG (k) ]

Plaintext
m

}

Keystream
ks

}

4.[

Encryption ]

Insecure channel

D

CSEDA415 — Spring 2025

>

Ciphertext

Key
k

lseed

[ PRNG (k) ]

}

Keystream
ks

}

C

g%

1

Decryption
D

b

=

Plaintext
m

54



Evaluating stream cipher

CSEDA415 — Spring 2025

&

@

rPOSsSTEPPCH
* Setting
Key Key
k k
seed lseed
[ PRNG(k) ] ( nnnnn 1\ ] . . . .
e Correctness: Guaranteed, as PRNG is deterministic
| » Security: Guaranteed by indistinguishability from
Keyskfream true randomness
S I no I
Insecure channel 1 Q)
\ 4
Plaintext Encryption ] ) Ciphertext Decryption Plaintext
m P C D m
dh




Example: Rivest Cipher (RC4) (1987)

rPOSTERCH

* A classical stream cipher

* Generates a continuous keystream ks of pseudorandom bytes
from a secret key k

* Encrypts plaintext m by XORing ks with m

* Variable-length key k: 5 to 256 bytes (let’s assume 256 bytes)

* Each byte of k can be accessed via k|0], k[1], ..., k[255],
where k[i] denotes the i + 1-th byte of k

* Consists of a Key Scheduling Algorithm (KSA) and
Pseudo-Random Generation Algorithm (PRGA)

CSEDA415 — Spring 2025 56



Example: Rivest Cipher (RC4) (1987)

rPOSTERCH

* Key scheduling algorithm (KSA):
* |nitializes the S-Box array S
* Given: Key k = k|0], k[1], ..., k|255]
* |nitial S-box array: S[0] = 0, S[1] =1, .., §[255] = 255

def KSA(k):
S = list(range(256)) # S = [0, 1, ..., 255]
] =0

for 1 in range(256):
j = (] + S[i1] + k[1]) % 256

# %: modulo
S[i], S[j]1 = S[jl, SLi] # swap

return S

CSEDA415 — Spring 2025 57



Example: Rivest Cipher (RC4) (1987)

rPOSTERCH

* Pseudo-Random Generation Algorithm (PRGA):

* Generates a pseudorandom keystream ks
* Given: S-box array = §[0], S[1], ..., S|255] (initialized by KSA)

def PRGA(m, S):

1, =20

ks = []

for 1 in range(len(m)): # ks should be as large as plaintext
1L=(1+ 1) % 256
j = (j + S[1]) % 256
S[il, S[j1 = S[jl, S[i] # swap
t = (S[i1] + S[j]) % 256
ks[1] = S[t]
1L +=1

return ks

CSEDA415 — Spring 2025 58



Example: Rivest Cipher (RC4) (1987)

rPOSTERCH

* Encryption:
* Bitwise-XOR m with ks generated by PRGA
cie,c=m®ks
* Decryption

* Generate ks from secret key k via KSA and PRGA

e Bitwise-XOR ¢ with ks
cie.m=c® ks

CSEDA415 — Spring 2025 59



Example: Rivest Cipher (RC4) (1987)

rPOSTERCH

* Security of RC4

* Many known weaknesses exist
» Key-dependent biases occur in the initial bytes of ks
* Inferable correlation between keystream and the key

* Despite its efficiency and simplicity, RC4 is no longer recommended
for cryptographic applications

e Secure alternatives: ChaCha20, AES-CTR, ...

CSEDA415 — Spring 2025 60



Cryptography roadmap

rPOSTERCH

Scheme
Goal

Symmetric Key

Asymmetric Key

Confidentiality

One Time Pad (OTP)
Block ciphers (DES, AES)
Stream ciphers

ElGamal encryption
RSA encryption

Integrity
&
Authentication

* Message Authentication
Code (MAC)

Digital signature

CSEDA415 — Spring 2025

61



Coming up next

rPOSTERCH

* Limitations of symmetric schemes

* Key needs to be securely shared

* Too many keys are needed
* One key for 2 ppl, 3 keys for 3 ppl, 6 keys for 4 ppl, 10 keys for 5 ppl, ...

- Asymmetric schemes were introduced

CSEDA415 — Spring 2025 62



Questions?

CCCCCCC — Spring 2025 rPOSTEREPLCH



