
Seulbae Kim

CSED415: Computer Security
Spring 2025

Lec 10: Cryptography (2)

2CSED415 – Spring 2025

Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• DH secure key exchange
• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication
Code (MAC) • Digital signature

✅
✅
✅

Today’s topic

CSED415 – Spring 2025

Secure Key Exchange
 (Diffie-Hellman)

4CSED415 – Spring 2025

Limitation of symmetric key scheme

• Key sharing problem:
• Symmetric key cryptography requires key 𝑘 to be securely shared

between Alice and Bob
• For securely sharing messages over insecure channels, symmetric

key cryptography is used
• However, symmetric schemes do not work without a shared 𝑘

A secure key exchange algorithm is needed

Key
𝑘

Key
𝑘

Insecure channel

5CSED415 – Spring 2025

Diffie-Hellman (DH) key exchange

• Named after Whitfield Diffie and Martin Hellman
• Key idea:
• Derive a shared secret key mathematically, rather than sending it

directly

6CSED415 – Spring 2025

Intuitive example: Colored keys

1. Alice shares a yellow key (public key) with Bob (and Eve)

Public Public

7CSED415 – Spring 2025

Intuitive example: Colored keys

2. Alice and Bob each select their own colored key (secret key)
and keep it to themselves

Public Public

Alice’s secret Bob’s secret

8CSED415 – Spring 2025

Intuitive example: Colored keys

3. Alice and Bob both mix the colors of the public key and their
own secret key, generating mixed keys

Public

Alice’s secret

Mixed by Alice

Public

Bob’s secret

Mixed by Bob

9CSED415 – Spring 2025

Intuitive example: Colored keys

4. Alice and Bob exchange the mixed keys
• Eve can see the mixed keys

Public

Alice’s secret

Mixed by Alice

Mixed by Bob

Public

Bob’s secret

Mixed by Bob

Mixed by Alice

10CSED415 – Spring 2025

Intuitive example: Colored keys

5. Finally, each party mixes the received mixed key with their
own secret key again, resulting in the same sync’ed key

Public

Alice’s secret

Mixed by Alice

Mixed by Bob

Public

Bob’s secret

Mixed by Bob

Mixed by AliceSync’ed key Sync’ed key

11CSED415 – Spring 2025

Intuitive example: Colored keys

6. Eve cannot derive the sync’ed key without knowing
Alice’s or Bob’s secret keys

Public

Alice’s secret

Mixed by Alice

Mixed by Bob

Public

Bob’s secret

Mixed by Bob

Mixed by AliceSync’ed key Sync’ed key

?

12CSED415 – Spring 2025

Intuitive example: Colored keys

6. Eve cannot derive the sync’ed key without knowing
Alice’s or Bob’s secret keys

Shared

Alice’s secret

Mixed by Alice

Mixed by Bob

Shared

Bob’s secret

Mixed by Bob

Mixed by AliceSync’ed key Sync’ed key

?
Some operations are easy to perform in one direction
but extremely hard to reverse

? ?Easy: Hard:

13CSED415 – Spring 2025

Background: Number theory

• Greatest common denominator 𝑑 = gcd 𝑎, 𝑏 :
• Largest integer 𝑑 such that 𝑑 divides 𝑎 and 𝑑 divides 𝑏

• Relatively prime (or, coprime)
• If gcd(𝑎, 𝑏) = 1, then 𝑎 and 𝑏 are relatively prime

• Is 15 relatively prime to 28?
• Is 14 and 49 relatively prime?
• Are 23 and 443 coprime?

• Hint: 23 and 443 are prime numbers

Yes. gcd(15,28) = 1
No. gcd(14,49) = 7
Yes. Two prime numbers are always coprime

14CSED415 – Spring 2025

Diffie-Hellman key exchange

1. Choose a prime num 𝑝 and its generator 𝑔 such that 𝑔 < 𝑝
• Both 𝑝 and 𝑔 are shared (public keys)
• 𝑔 is a generator of 𝑝 if 𝑔! 	𝑚𝑜𝑑	𝑝 can take any value in [1, … , 𝑝 − 1]
• Example: 𝑝 = 11

𝒈𝒌	𝒎𝒐𝒅	𝒑 𝒊 = 𝟎 𝒊 = 𝟏 𝒊 = 𝟐 𝒊 = 𝟑 𝒊 = 𝟒 𝒊 = 𝟓 𝒊 = 𝟔 𝒊 = 𝟕 𝒊 = 𝟖 𝒊 = 𝟗 𝟏𝟎

2" 	𝑚𝑜𝑑	11 1 2 4 8 5 10 9 7 3 6 1

3" 	𝑚𝑜𝑑	11 1 3 9 5 4 1 3 9 5 4 1
4" 	𝑚𝑜𝑑	11 1 4 5 9 3 1 4 5 9 3 1
5" 	𝑚𝑜𝑑	11 1 5 3 4 9 1 5 3 4 9 1
6" 	𝑚𝑜𝑑	11 1 6 3 7 9 10 5 8 4 2 1

…

Generator?

Y
N
N
N
Y

à We can select 𝑔 = 6

15CSED415 – Spring 2025

Diffie-Hellman key exchange

2. Alice and Bob each choose a secret key
• Assume Alice’s secret key 𝑎 = 15

and Bob’s secret key 𝑏 = 8

Public Secret
𝑝 = 11
𝑔 = 6

𝑎 = 15
𝑏 = 8

16CSED415 – Spring 2025

Diffie-Hellman key exchange

2. Alice and Bob each choose a secret key
• Assume Alice’s secret key 𝑎 = 15

and Bob’s secret key 𝑏 = 8

3. Alice and Bob compute 𝑔! 	𝑚𝑜𝑑	𝑝 where 𝑥 is the secret key
• 𝐴 = 𝑔" 	𝑚𝑜𝑑	𝑝 = 6#$	𝑚𝑜𝑑	11
• 𝐵 = 𝑔% 	𝑚𝑜𝑑	𝑝 = 6&	𝑚𝑜𝑑	11

𝑝 = 11
𝑔 = 6

Public
𝑎 = 15
𝑏 = 8

Secret

ß Too large to be calculated by hand?

17CSED415 – Spring 2025

Diffie-Hellman key exchange

• Note: Modular exponentiation
• We can compute 𝑥' 	𝑚𝑜𝑑	𝑛 by breaking 𝑦 down into powers of 2
• e.g., 6#$	𝑚𝑜𝑑	11 à 15 = 8 + 4 + 2 + 1

• 6AB = 6C×6D×6E×6
• 6	𝑚𝑜𝑑	11 = 6
• 6E	𝑚𝑜𝑑	11 = 36	𝑚𝑜𝑑	11 = 3
• 6D	𝑚𝑜𝑑	11 = 6E E	𝑚𝑜𝑑	11 = 3E	𝑚𝑜𝑑	11 = 9
• 6C	𝑚𝑜𝑑	11 = 6D E	𝑚𝑜𝑑	11 = 9E	𝑚𝑜𝑑	11 = 81	𝑚𝑜𝑑	11 = 4
• Thus, 6AB	𝑚𝑜𝑑	11 = 4×9×3×6 	𝑚𝑜𝑑	11 = 648	𝑚𝑜𝑑	11 = 10

18CSED415 – Spring 2025

Diffie-Hellman key exchange

2. Alice and Bob each choose a secret key
• Assume Alice’s secret key 𝑎 = 15

and Bob’s secret key 𝑏 = 8

3. Alice and Bob compute 𝑔! 	𝑚𝑜𝑑	𝑝 where 𝑥 is the secret key
• Alice’s mixed key 𝐴 = 𝑔" 	𝑚𝑜𝑑	𝑝 = 6#$	𝑚𝑜𝑑	11 = 10
• Bob’s mixed key 𝐵 = 𝑔% 	𝑚𝑜𝑑	𝑝 = 6&	𝑚𝑜𝑑	11 = 4

Public Secret
𝑝 = 11
𝑔 = 6

𝑎 = 15
𝑏 = 8

Modular exponentiation!

19CSED415 – Spring 2025

Diffie-Hellman key exchange

4. Alice and Bob exchange their mixed keys
• 𝐴 = 6#$	𝑚𝑜𝑑	11 = 10
• 𝐵 = 6&	𝑚𝑜𝑑	11 = 4

𝑝 = 11
𝑔 = 6
𝐴 = 10
𝐵 = 4

Public
𝑎 = 15
𝑏 = 8

Secret

20CSED415 – Spring 2025

Diffie-Hellman key exchange

5. Alice and Bob then can generate a common
shared key 𝑘 by raising the exchanged
mixed key to their respective secret keys
• Alice: 𝑘 = 𝐵" 	𝑚𝑜𝑑	𝑝 = 4#$	𝑚𝑜𝑑	11
• Bob: 𝑘 = 𝐴% 	𝑚𝑜𝑑	𝑝 = 10&	𝑚𝑜𝑑	11

𝑝 = 11
𝑔 = 6
𝐴 = 10
𝐵 = 4

Public
𝑎 = 15
𝑏 = 8

Secret

21CSED415 – Spring 2025

Diffie-Hellman key exchange

5. Alice and Bob then can generate a common
shared key 𝑘 by raising the exchanged
mixed key to their respective secret keys
• Alice: 𝑘 = 𝐵" 	𝑚𝑜𝑑	𝑝 = 4#$	𝑚𝑜𝑑	11
• Bob: 𝑘 = 𝐴% 	𝑚𝑜𝑑	𝑝 = 10&	𝑚𝑜𝑑	11

𝑝 = 11
𝑔 = 6
𝐴 = 10
𝐵 = 4

Public
𝑎 = 15
𝑏 = 8

Secret

4!"	𝑚𝑜𝑑	11 = 4#×4$×4%×4	𝑚𝑜𝑑	11	

4	𝑚𝑜𝑑	11 = 4
4#	𝑚𝑜𝑑	11 = 16	𝑚𝑜𝑑	11 = 5
4$	𝑚𝑜𝑑	11 = 4# #	𝑚𝑜𝑑	11 = 5#	𝑚𝑜𝑑	11 = 25	𝑚𝑜𝑑	11 = 3
4%	𝑚𝑜𝑑	11 = 4$ #	𝑚𝑜𝑑	11 = 9	𝑚𝑜𝑑	11 = 9

22CSED415 – Spring 2025

Diffie-Hellman key exchange

5. Alice and Bob then can generate a common
shared key 𝑘 by raising the exchanged
mixed key to their respective secret keys
• Alice: 𝑘 = 𝐵" 	𝑚𝑜𝑑	𝑝 = 4#$	𝑚𝑜𝑑	11 = 1
• Bob: 𝑘 = 𝐴% 	𝑚𝑜𝑑	𝑝 = 10&	𝑚𝑜𝑑	11

𝑝 = 11
𝑔 = 6
𝐴 = 10
𝐵 = 4

Public
𝑎 = 15
𝑏 = 8

Secret

4!"	𝑚𝑜𝑑	11 = 4#×4$×4%×4	𝑚𝑜𝑑	11	

4	𝑚𝑜𝑑	11 = 4
4#	𝑚𝑜𝑑	11 = 16	𝑚𝑜𝑑	11 = 5
4$	𝑚𝑜𝑑	11 = 4# #	𝑚𝑜𝑑	11 = 5#	𝑚𝑜𝑑	11 = 25	𝑚𝑜𝑑	11 = 3
4%	𝑚𝑜𝑑	11 = 4$ #	𝑚𝑜𝑑	11 = 9	𝑚𝑜𝑑	11 = 9

= 9×3×5×4	𝑚𝑜𝑑	11 = 1

23CSED415 – Spring 2025

Diffie-Hellman key exchange

5. Alice and Bob then can generate a common
shared key 𝑘 by raising the exchanged
mixed key to their respective secret keys
• Alice: 𝑘 = 𝐵" 	𝑚𝑜𝑑	𝑝 = 4#$	𝑚𝑜𝑑	11 = 1
• Bob: 𝑘 = 𝐴% 	𝑚𝑜𝑑	𝑝 = 10&	𝑚𝑜𝑑	11 = 1

𝑝 = 11
𝑔 = 6
𝐴 = 10
𝐵 = 4

Public
𝑎 = 15
𝑏 = 8

Secret

10	𝑚𝑜𝑑	11 ≡ −1	𝑚𝑜𝑑	11
10#	𝑚𝑜𝑑	11 = −1 #	𝑚𝑜𝑑	11 = 1	𝑚𝑜𝑑	11 = 1

24CSED415 – Spring 2025

Diffie-Hellman key exchange

5. Alice and Bob then can generate a common
shared key 𝑘 by raising the exchanged
mixed key to their respective secret keys
• Alice: 𝑘 = 𝐵" 	𝑚𝑜𝑑	𝑝 = 4#$	𝑚𝑜𝑑	11 = 1
• Bob: 𝑘 = 𝐴% 	𝑚𝑜𝑑	𝑝 = 10&	𝑚𝑜𝑑	11 = 1

𝑝 = 11
𝑔 = 6
𝐴 = 10
𝐵 = 4

Public
𝑎 = 15
𝑏 = 8
𝑘 = 1

Secret

Alice and Bob have successfully generated a shared secret key 𝑘

25CSED415 – Spring 2025

Diffie-Hellman key exchange

• Can Eve deduce the shared secret key?
• Problem that Eve needs to solve:

• Given 𝑝, 𝑔, 𝐴, and 𝐵, find 𝑎, 𝑏, and 𝑘 such that
𝐴F	𝑚𝑜𝑑	𝑝 = 𝐵G	𝑚𝑜𝑑	𝑝 = 𝑘.

• Discrete log problem (DLP):
• Given 𝑝, 𝑔, and 𝐵 = 𝑔G	𝑚𝑜𝑑	𝑝, it is computationally difficult to find 𝑎,

especially for large prime number 𝑝
• e.g., 𝑔&	𝑚𝑜𝑑	𝑝 = 6&	𝑚𝑜𝑑	11 = 4 à Can you find 𝑎?
• How about 43&	𝑚𝑜𝑑	170141183460469231731687303715884105727 =
107658615995071204650478536027214115641 ?

𝑝 = 11
𝑔 = 6
𝐴 = 10
𝐵 = 4

Public Secret
𝑎 = 15
𝑏 = 8
𝑘 = 1

26CSED415 – Spring 2025

Generalization of Diffie-Hellman key exchange

• A large prime 𝑝 and a generator 𝑔 are shared

27CSED415 – Spring 2025

Generalization of Diffie-Hellman key exchange

• A large prime 𝑝 and a generator 𝑔 are shared
• Mixing:
• Alice chooses a secret integer a and computes 𝐴 = 𝑔" 	𝑚𝑜𝑑	𝑝
• Bob chooses a secret integer b and computes 𝐵 = 𝑔% 	𝑚𝑜𝑑	𝑝

28CSED415 – Spring 2025

Generalization of Diffie-Hellman key exchange

• A large prime 𝑝 and a generator 𝑔 are shared
• Mixing:
• Alice chooses a secret integer a and computes 𝐴 = 𝑔" 	𝑚𝑜𝑑	𝑝
• Bob chooses a secret integer b and computes 𝐵 = 𝑔% 	𝑚𝑜𝑑	𝑝

• Deducing the shared secret:
• Alice computes 𝑘 = 𝐵" 	𝑚𝑜𝑑	𝑝 = 𝑔%

"
	𝑚𝑜𝑑	𝑝 = 𝑔"% 	𝑚𝑜𝑑	𝑝

• Bob computes 𝑘 = 𝐴% 	𝑚𝑜𝑑	𝑝 = 𝑔" % 	𝑚𝑜𝑑	𝑝 = 𝑔"% 	𝑚𝑜𝑑	𝑝

29CSED415 – Spring 2025

Generalization of Diffie-Hellman key exchange

• A large prime 𝑝 and a generator 𝑔 are shared
• Mixing:
• Alice chooses a secret integer a and computes 𝐴 = 𝑔" 	𝑚𝑜𝑑	𝑝
• Bob chooses a secret integer b and computes 𝐵 = 𝑔% 	𝑚𝑜𝑑	𝑝

• Deducing the shared secret:
• Alice computes 𝑘 = 𝐵" 	𝑚𝑜𝑑	𝑝 = 𝑔%

"
	𝑚𝑜𝑑	𝑝 = 𝑔"% 	𝑚𝑜𝑑	𝑝

• Bob computes 𝑘 = 𝐴% 	𝑚𝑜𝑑	𝑝 = 𝑔" % 	𝑚𝑜𝑑	𝑝 = 𝑔"% 	𝑚𝑜𝑑	𝑝

• Eve knows 𝑝, 𝑔, 𝐴, and 𝐵
• Eve cannot feasibly solve DLP to compute 𝑎 nor 𝑏 if 𝑝 is large

30CSED415 – Spring 2025

Generalization of Diffie-Hellman key exchange

• A large prime 𝑝 and a generator 𝑔 are shared
• Mixing:
• Alice chooses a secret integer a and computes 𝐴 = 𝑔" 	𝑚𝑜𝑑	𝑝
• Bob chooses a secret integer b and computes 𝐵 = 𝑔% 	𝑚𝑜𝑑	𝑝

• Deducing the shared secret:
• Alice computes 𝑘 = 𝐵" 	𝑚𝑜𝑑	𝑝 = 𝑔%

"
	𝑚𝑜𝑑	𝑝 = 𝑔"% 	𝑚𝑜𝑑	𝑝

• Bob computes 𝑘 = 𝐴% 	𝑚𝑜𝑑	𝑝 = 𝑔" % 	𝑚𝑜𝑑	𝑝 = 𝑔"% 	𝑚𝑜𝑑	𝑝

• Eve knows 𝑝, 𝑔, 𝐴, and 𝐵
• Eve cannot feasibly solve DLP to compute 𝑎 nor 𝑏 if 𝑝 is large

DH is secure against passive attacks

31CSED415 – Spring 2025

Diffie-Hellman key exchange

• Intended key exchange

Select 𝑎
Compute 𝑔&	𝑚𝑜𝑑	𝑝

Receive 𝑔'	𝑚𝑜𝑑	𝑝
Compute 𝑔' &	𝑚𝑜𝑑	𝑝

Select 𝑏
Compute 𝑔'	𝑚𝑜𝑑	𝑝

Receive 𝑔&	𝑚𝑜𝑑	𝑝
Compute 𝑔& '	𝑚𝑜𝑑	𝑝

Shared secret Shared secret

32CSED415 – Spring 2025

Diffie-Hellman – Man in the Middle (MitM) attack

• What if Mallory actively alters key exchange messages?

Select 𝑎
Compute 𝑔&	𝑚𝑜𝑑	𝑝

Select 𝑏
Compute 𝑔'	𝑚𝑜𝑑	𝑝

Select 𝑚
Compute 𝑔(𝑚𝑜𝑑	𝑝

MitM

33CSED415 – Spring 2025

Diffie-Hellman – Man in the Middle (MitM) attack

• What if Mallory actively alters key exchange messages?

Select 𝑎
Compute 𝑔&	𝑚𝑜𝑑	𝑝

Receive 𝑔(𝑚𝑜𝑑	𝑝
Compute 𝑔(&	𝑚𝑜𝑑	𝑝

Select 𝑏
Compute 𝑔'	𝑚𝑜𝑑	𝑝

Receive 𝑔(𝑚𝑜𝑑	𝑝
Compute 𝑔('	𝑚𝑜𝑑	𝑝

Select 𝑚
Compute 𝑔(𝑚𝑜𝑑	𝑝

Receive 𝑔&	𝑚𝑜𝑑	𝑝
Compute 𝑔& (𝑚𝑜𝑑	𝑝

Receive 𝑔'	𝑚𝑜𝑑	𝑝
Compute 𝑔' (𝑚𝑜𝑑	𝑝

34CSED415 – Spring 2025

Diffie-Hellman – Man in the Middle (MitM) attack

• What if Mallory actively alters key exchange messages?

Select 𝑎
Compute 𝑔&	𝑚𝑜𝑑	𝑝

Receive 𝑔(𝑚𝑜𝑑	𝑝
Compute 𝑔(&	𝑚𝑜𝑑	𝑝

𝑘 = 𝑔(&	𝑚𝑜𝑑	𝑝

Select 𝑏
Compute 𝑔'	𝑚𝑜𝑑	𝑝

Receive 𝑔(𝑚𝑜𝑑	𝑝
Compute 𝑔('	𝑚𝑜𝑑	𝑝

𝑘′ = 𝑔('	𝑚𝑜𝑑	𝑝

Select 𝑚
Compute 𝑔(𝑚𝑜𝑑	𝑝

Receive 𝑔&	𝑚𝑜𝑑	𝑝
Compute 𝑔& (𝑚𝑜𝑑	𝑝

𝑘 = 𝑔(&	𝑚𝑜𝑑	𝑝

Receive 𝑔'	𝑚𝑜𝑑	𝑝
Compute 𝑔' (𝑚𝑜𝑑	𝑝

𝑘′ = 𝑔('	𝑚𝑜𝑑	𝑝

Mallory keeps two shared keys: 𝑘 for Alice, and 𝑘’ for Bob, respectively

35CSED415 – Spring 2025

Diffie-Hellman – Man in the Middle (MitM) attack

• Then, Mallory can tamper with messages

Select 𝑎
Compute 𝑔&	𝑚𝑜𝑑	𝑝

Receive 𝑔(𝑚𝑜𝑑	𝑝
Compute 𝑔(&	𝑚𝑜𝑑	𝑝

𝑘 = 𝑔(&	𝑚𝑜𝑑	𝑝

Select 𝑏
Compute 𝑔'	𝑚𝑜𝑑	𝑝

Receive 𝑔(𝑚𝑜𝑑	𝑝
Compute 𝑔('	𝑚𝑜𝑑	𝑝

𝑘′ = 𝑔('	𝑚𝑜𝑑	𝑝

Select 𝑚
Compute 𝑔(𝑚𝑜𝑑	𝑝

Receive 𝑔&	𝑚𝑜𝑑	𝑝
Compute 𝑔& (𝑚𝑜𝑑	𝑝

𝑘 = 𝑔(&	𝑚𝑜𝑑	𝑝

Receive 𝑔'	𝑚𝑜𝑑	𝑝
Compute 𝑔' (𝑚𝑜𝑑	𝑝

𝑘′ = 𝑔('	𝑚𝑜𝑑	𝑝

Mallory can decrypt Alice’s 𝑚𝑠𝑔 using 𝑘

𝐸(𝑘,𝑚𝑠𝑔) 𝐷 𝑘, 𝐸 𝑘,𝑚𝑠𝑔

36CSED415 – Spring 2025

Diffie-Hellman – Man in the Middle (MitM) attack

• Then, Mallory can tamper with messages

Select 𝑎
Compute 𝑔&	𝑚𝑜𝑑	𝑝

Receive 𝑔(𝑚𝑜𝑑	𝑝
Compute 𝑔(&	𝑚𝑜𝑑	𝑝

𝑘 = 𝑔(&	𝑚𝑜𝑑	𝑝

Select 𝑏
Compute 𝑔'	𝑚𝑜𝑑	𝑝

Receive 𝑔(𝑚𝑜𝑑	𝑝
Compute 𝑔('	𝑚𝑜𝑑	𝑝

𝑘′ = 𝑔('	𝑚𝑜𝑑	𝑝

Select 𝑚
Compute 𝑔(𝑚𝑜𝑑	𝑝

Receive 𝑔&	𝑚𝑜𝑑	𝑝
Compute 𝑔& (𝑚𝑜𝑑	𝑝

𝑘 = 𝑔(&	𝑚𝑜𝑑	𝑝

Receive 𝑔'	𝑚𝑜𝑑	𝑝
Compute 𝑔' (𝑚𝑜𝑑	𝑝

𝑘′ = 𝑔('	𝑚𝑜𝑑	𝑝

𝐸(𝑘,𝑚𝑠𝑔) 𝐷 𝑘, 𝐸 𝑘,𝑚𝑠𝑔 𝐸 𝑘′,𝑚𝑠𝑔′

Mallory can modify the 𝑚𝑠𝑔 to 𝑚𝑠𝑔’ and encrypt it using 𝑘’ for Bob
𝐷 𝑘), 𝐸 𝑘), 𝑚𝑠𝑔′

37CSED415 – Spring 2025

Diffie-Hellman – Man in the Middle (MitM) attack

• Then, Mallory can tamper with messages

Select 𝑎
Compute 𝑔&	𝑚𝑜𝑑	𝑝

Receive 𝑔(𝑚𝑜𝑑	𝑝
Compute 𝑔(&	𝑚𝑜𝑑	𝑝

𝑘 = 𝑔(&	𝑚𝑜𝑑	𝑝

Select 𝑏
Compute 𝑔'	𝑚𝑜𝑑	𝑝

Receive 𝑔(𝑚𝑜𝑑	𝑝
Compute 𝑔('	𝑚𝑜𝑑	𝑝

𝑘′ = 𝑔('	𝑚𝑜𝑑	𝑝

Select 𝑚
Compute 𝑔(𝑚𝑜𝑑	𝑝

Receive 𝑔&	𝑚𝑜𝑑	𝑝
Compute 𝑔& (𝑚𝑜𝑑	𝑝

𝑘 = 𝑔(&	𝑚𝑜𝑑	𝑝

Receive 𝑔'	𝑚𝑜𝑑	𝑝
Compute 𝑔' (𝑚𝑜𝑑	𝑝

𝑘′ = 𝑔('	𝑚𝑜𝑑	𝑝

𝐸(𝑘,𝑚𝑠𝑔) 𝐷 𝑘, 𝐸 𝑘,𝑚𝑠𝑔 𝐸 𝑘′,𝑚𝑠𝑔′ 𝐷 𝑘), 𝐸 𝑘), 𝑚𝑠𝑔′

Alice and Bob are tricked into believing that they are securely communicating

38CSED415 – Spring 2025

Diffie-Hellman – Man in the Middle (MitM) attack

• What if Mallory actively changes key exchange messages?

Select 𝑎
Compute 𝑔&	𝑚𝑜𝑑	𝑝

Receive 𝑔(𝑚𝑜𝑑	𝑝
Compute 𝑔(&	𝑚𝑜𝑑	𝑝

𝑘 = 𝑔(&	𝑚𝑜𝑑	𝑝

Select 𝑏
Compute 𝑔'	𝑚𝑜𝑑	𝑝

Receive 𝑔(𝑚𝑜𝑑	𝑝
Compute 𝑔('	𝑚𝑜𝑑	𝑝

𝑘′ = 𝑔('	𝑚𝑜𝑑	𝑝

Select 𝑚
Compute 𝑔(𝑚𝑜𝑑	𝑝

Receive 𝑔&	𝑚𝑜𝑑	𝑝
Compute 𝑔& (𝑚𝑜𝑑	𝑝

𝑘 = 𝑔(&	𝑚𝑜𝑑	𝑝

Receive 𝑔'	𝑚𝑜𝑑	𝑝
Compute 𝑔' (𝑚𝑜𝑑	𝑝

𝑘′ = 𝑔('	𝑚𝑜𝑑	𝑝

𝐸 𝑘′,𝑚𝑠𝑔′ 𝐷 𝑘), 𝐸 𝑘), 𝑚𝑠𝑔′𝐸(𝑘,𝑚𝑠𝑔) 𝐷 𝑘, 𝐸 𝑘,𝑚𝑠𝑔

Alice and Bob are tricked into believing that they are securely communicating

DH key exchange is insecure against active attacks

39CSED415 – Spring 2025

Key exchange in the presence of active attacker

• When Mallory (an active attacker) exists, it is impossible for
Alice and Bob to start from scratch and exchange messages
to derive a shared key unknown to the adversary
• Why?
• Bob cannot distinguish Alice from Mallory because DH does not

provide authentication

• Solution:
• Alice and Bob needs an “information advantage” over the adversary

• Typically, in the form of long-lived keys (e.g., previously shared keys)
• More on this next week!

40CSED415 – Spring 2025

Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• DH secure key exchange
• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication
Code (MAC) • Digital signature

✅
✅
✅

✅

CSED415 – Spring 2025

Asymmetric Cryptography
(Public key Scheme)

42CSED415 – Spring 2025

Motivation

• Another limitation of symmetric key schemes
• The number of symmetric keys needed grows exponentially

à F
G = F(FH#)

G
 keys are needed for 𝑛 people to securely communicate

using symmetric key schemes

A

E

C

B

D

43CSED415 – Spring 2025

Solution: Public-key cryptography

• Idea:
• Utilize an asymmetric key pair < 𝑘I, 𝑘J >, where

• 𝑘H: Public key that is publicly released
• 𝑘I: Secret key, which is kept secret

• Any sender can encrypt a message using the receiver’s public key
• 𝑐	 = 𝐸(𝑘H, 𝑚)

• Only the receiver can decrypt the ciphertext using his or her own
private key
• 𝑚	 = 𝐷 𝑘I, 𝑐

44CSED415 – Spring 2025

ElGamal encryption

• An extension of Diffie-Hellman key exchange
• DH only provides only a shared secret derivation
• ElGamal supports direct encryption and decryption on top of DH key

exchange

45CSED415 – Spring 2025

ElGamal encryption

• Alice chooses a secret key 𝑎
• Alice generates a public key 𝐴 = 𝑔" 	𝑚𝑜𝑑	𝑝
• 𝑝 (prime number) and 𝑔 (generator) are public

• Bob wants to encrypt 𝑚 for Alice

𝐴

𝑚

𝑎
𝐴 = 𝑔!	𝑚𝑜𝑑	𝑝

46CSED415 – Spring 2025

ElGamal encryption

• Alice chooses a secret key 𝑎
• Alice generates a public key 𝐴 = 𝑔" 	𝑚𝑜𝑑	𝑝
• Bob wants to encrypt 𝑚 for Alice
• Bob picks a random 𝑟 and computes 𝑅 = 𝑔K 	𝑚𝑜𝑑	𝑝
• Bob sends c = 𝑚	×	𝐴K 	𝑚𝑜𝑑	𝑝 and 𝑅 to Alice

𝐴

𝑚

𝑎
𝐴 = 𝑔!	𝑚𝑜𝑑	𝑝

𝑟

𝑅 = 𝑔"	𝑚𝑜𝑑	𝑝

𝑐 = 𝑚×𝐴"	𝑚𝑜𝑑	𝑝

𝑅
𝑐

47CSED415 – Spring 2025

ElGamal encryption

• Alice chooses a secret key 𝑎
• Alice generates a public key 𝐴 = 𝑔" 	𝑚𝑜𝑑	𝑝
• Bob wants to encrypt 𝑚 for Alice
• Bob picks a random 𝑟 and computes 𝑅 = 𝑔K 	𝑚𝑜𝑑	𝑝
• Bob sends c = 𝑚	×	𝐴K 	𝑚𝑜𝑑	𝑝 and 𝑅 to Alice

• Alice can decrypt 𝑐 by:
• 𝑐	× 𝑅" H# = 𝑚	×	𝐴K 	×	𝑅H" 	𝑚𝑜𝑑	𝑝 = 𝑚	× 𝑔" K 	× 𝑔K H" 	𝑚𝑜𝑑	𝑝
	 = 𝑚	𝑚𝑜𝑑	𝑝 = 𝑚

𝐴

𝑚

𝑎
𝐴 = 𝑔!	𝑚𝑜𝑑	𝑝

𝑟

𝑅 = 𝑔"	𝑚𝑜𝑑	𝑝

𝑐 = 𝑚×𝐴"	𝑚𝑜𝑑	𝑝

𝑅
𝑐

48CSED415 – Spring 2025

ElGamal encryption

• Alice chooses a secret key 𝑎
• Alice generates a public key 𝐴 = 𝑔" 	𝑚𝑜𝑑	𝑝
• Bob wants to encrypt 𝑚 for Alice
• Bob picks a random 𝑟 and computes 𝑅 = 𝑔K 	𝑚𝑜𝑑	𝑝
• Bob sends c = 𝑚	×	𝐴K 	𝑚𝑜𝑑	𝑝 and 𝑅 to Alice

• Alice can decrypt 𝑐 by:
• 𝑐	× 𝑅" H# = 𝑚	×	𝐴K 	×	𝑅H" 	𝑚𝑜𝑑	𝑝 = 𝑚	× 𝑔" K 	× 𝑔K H" 	𝑚𝑜𝑑	𝑝
	 = 𝑚	𝑚𝑜𝑑	𝑝 = 𝑚

𝐴

𝑚

𝑎
𝐴 = 𝑔!	𝑚𝑜𝑑	𝑝

𝑟

𝑅 = 𝑔"	𝑚𝑜𝑑	𝑝

𝑐 = 𝑚×𝐴"	𝑚𝑜𝑑	𝑝

𝑅
𝑐

Security: Given 𝐴, 𝑅, and 𝑐, Eve cannot recover 𝑚 (DLP!)

49CSED415 – Spring 2025

ElGamal encryption

• Example
• Public parameters: 𝑝 = 13, 𝑔 = 2
• Alice’s secret key 𝑎 = 3 // randomly chosen
• Alices’ public key 𝐴 = 𝑔" 	𝑚𝑜𝑑	𝑝 = 	2L	𝑚𝑜𝑑	13 = 8
• Bob’s message 𝑚 = 11
• Bob’s random 𝑟 = 5
• Bob computes 𝑅 = 𝑔K 	𝑚𝑜𝑑	𝑝 = 2$	𝑚𝑜𝑑	13 = 6
• Bob encrypts 𝑚: 𝑐 = 𝑚	×	𝐴K 	𝑚𝑜𝑑	𝑝 = 11	×	8$	𝑚𝑜𝑑	13 = 10
• Alice receives 𝑅 and 𝑐 from Bob and decrypts 𝑐 to obtain 𝑚

• 𝑚 = 𝑐	× 𝑅G JA	𝑚𝑜𝑑	𝑝 = 10	×	6JK	𝑚𝑜𝑑	13 = 11

𝐴

𝑚

𝑎
𝐴 = 𝑔!	𝑚𝑜𝑑	𝑝

𝑟

𝑅 = 𝑔"	𝑚𝑜𝑑	𝑝

𝑐 = 𝑚×𝐴"	𝑚𝑜𝑑	𝑝

𝑅
𝑐

Correctly decrypted!
Using Python: 10 * pow(6, -3, 13) % 13

50CSED415 – Spring 2025

Summary of ElGamal encryption

• ElGamal encryption provides confidentiality
• Discrete logarithm problem

• ElGamal encryption does not provide integrity
• Mallory can tamper with the ciphertext without decrypting it
• e.g.,

• Mallory (MitM) receives 𝑅 and 𝑐 from Bob
• Mallory sends 𝑅 and cL = 𝑐	×	2 to Alice
• Alice decrypts cL and retrieves 𝑚	×	2	𝑚𝑜𝑑	13

51CSED415 – Spring 2025

Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• DH secure key exchange
• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication
Code (MAC) • Digital signature

✅
✅
✅

✅
✅

52CSED415 – Spring 2025

RSA Encryption

• Idea: Prime factorization of large numbers is hard
• Q) What are the prime factors of 10403?

53CSED415 – Spring 2025

RSA Encryption

• Idea: Prime factorization of large numbers is hard
• Q) What are the prime factors of 10403?

• Naïve algorithm:

N = pq where p and q are primes
def factorize(N):
 for i in range(2, sqrt(N)):
 if N mod i == 0:
 p = i
 q = N / i
 return (p, q)

This algorithm works, but takes time 𝑂(𝑁)
e.g., using a 2048-bit N, naïve factorization takes 𝑂(2GMN&)

54CSED415 – Spring 2025

RSA Encryption

• Choose two large primes 𝑝 and 𝑞
• Compute public 𝑁 = 𝑝𝑞
• Compute the totient, 𝑇 = (𝑝 − 1)(𝑞 − 1)
• Select public key 𝑒, such that 𝑒 is relatively prime to 𝑇
• Compute private key 𝑑 = 𝑒#$	𝑚𝑜𝑑	𝑇
• 𝑒𝑑 = 1	𝑚𝑜𝑑	𝑇

// modular inverse of 𝑒

55CSED415 – Spring 2025

RSA Encryption

• Encryption function:
• 𝐸 𝑒,𝑚 = 𝑚O 	𝑚𝑜𝑑	𝑁 = 𝑐

• Decryption function:
• 𝐷 𝑑, 𝑐 = 𝑐P 	𝑚𝑜𝑑	𝑁
• Magically, 𝑚 = 𝑐P 	𝑚𝑜𝑑	𝑁 holds:

• 𝑐M	𝑚𝑜𝑑	𝑁 = 𝑚N M	𝑚𝑜𝑑	𝑁
 = 𝑚NM	𝑚𝑜𝑑	𝑁	 ⋯ 	 𝑒𝑑 = 𝑘𝑇 + 1 because 𝑒𝑑 = 1	𝑚𝑜𝑑	𝑇
 = 𝑚OP𝑚A	𝑚𝑜𝑑	𝑁
 = 𝑚	𝑚𝑜𝑑	𝑁	 ⋯	 𝑚P = 1	𝑚𝑜𝑑	𝑁 by Euler’s theorem*

// Anyone can encrypt using the public key 𝑒

// Only the receiver can decrypt using the private key 𝑑

* If 𝑚 and 𝑁 = 𝑝𝑞 are relatively prime, then 𝑚& = 1	𝑚𝑜𝑑	𝑁 where 𝑇 = (𝑝 − 1)(𝑞 − 1)

56CSED415 – Spring 2025

RSA example

• 𝑝 = 7, 𝑞 = 11
• 𝑁 = 77
• 𝑇 = 𝑝 − 1 𝑞 − 1 = 6×10 = 60
• Select public key 𝑒 that is coprime to 60 à 𝑒 = 7
• Private key 𝑑 = 𝑒#$	𝑚𝑜𝑑	𝑇 = 7#$	𝑚𝑜𝑑	60 = 43
• Problem: Find 𝑒 such that 7×𝑒	𝑚𝑜𝑑	60 = 1

• Can be obtained by the Extended Euclid’s algorithm
• In Python: pow(7, -1, 60)

57CSED415 – Spring 2025

RSA example

• Given
• Secret: 𝑝 = 7, 𝑞 = 11, 𝑑 = 43
• Public: 𝑁 = 77, 𝑒 = 7

• Plaintext 𝑚 = 8
• Encryption
• 𝑐 = 𝑚O 	𝑚𝑜𝑑	𝑁 = 8R	𝑚𝑜𝑑	77 = 57

• Decryption
• 𝑚 = 𝑐P 	𝑚𝑜𝑑	𝑁 = 57NL	𝑚𝑜𝑑	77 = 8

58CSED415 – Spring 2025

RSA example

• Given
• Secret: 𝑝 = 7, 𝑞 = 11, 𝑑 = 43
• Public: 𝑁 = 77, 𝑒 = 7

• Plaintext 𝑚 = 8
• Encryption
• 𝑐 = 𝑚O 	𝑚𝑜𝑑	𝑁 = 8R	𝑚𝑜𝑑	77 = 57

• Decryption
• 𝑚 = 𝑐P 	𝑚𝑜𝑑	𝑁 = 57NL	𝑚𝑜𝑑	77 = 8 ß Correctly decrypted!

(Use modular exponentiation
for computation)

59CSED415 – Spring 2025

RSA security – Confidentiality

• RSA provides confidentiality based on the hardness of
integer factorization problem
• Steps for Eve to decipher 𝑐 given public 𝑁 and public key 𝑒,

• To compute 𝑚 = 𝑐M	𝑚𝑜𝑑	𝑁, Eve needs to find the secret key 𝑑
• To derive 𝑑 = 𝑒JA	𝑚𝑜𝑑	𝑇, Eve needs to find 𝑇
• To find 𝑇 = (𝑝 − 1)(𝑞 − 1), Eve needs to find 𝑝 and 𝑞
• To find 𝑝 and 𝑞 such that 𝑁 = 𝑝𝑞, Eve needs to prime factorize 𝑁
• However, there is no polynomial time algorithm that can factor a large integer
𝑁 to find its prime factors 𝑝 and 𝑞

60CSED415 – Spring 2025

RSA security – Integrity

• RSA does not guarantee integrity
• Still susceptible to MitM attacks

“Give me your pubkey 𝑒”
Generate 𝑒 and sendStore 𝑒

Generate 𝑒′ and sendEncrypt 𝑚 using 𝑒′

Send resulting 𝑐 Decrypt 𝑐 using 𝑑′

Tamper with 𝑚 to procude 𝑚'

Encrypt 𝑚′ using stored 𝑒

Send 𝑐′ Decrypt and get 𝑚′

61CSED415 – Spring 2025

Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• DH secure key exchange
• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication
Code (MAC) • Digital signature

✅
✅
✅

✅
✅
✅

CSED415 – Spring 2025

Questions?

