Lec 10: Cryptography (2)

CSED415: Computer Security
Spring 2025

Seulbae Kim
POSTECH



Cryptography roadmap

rPOSTRPCH

Scheme
Goal

Symmetric Key

Asymmetric Key
Today’s topic

Confidentiality

One Time Pad (OTP)

Block ciphers (DES, AES)

Stream ciphers

DH secure key exchange
ElGamal encryption
RSA encryption

Integrity
&
Authentication

Message Authentication
Code (MAC)

Digital signature

CSEDA415 — Spring 2025



Secure Key Exchange
(Diffie-Hellman)

CCCCCCC — Spring 2025 rPOSTEREPLCH



Limitation of symmetric key scheme

* Key sharing problem:

rPOSTERCH

* Symmetric key cryptography requires key k to be securely shared

hetween Alice and Bob

Insecure channel

Key
k

&

Key
k

2T

* For securely sharing messages over insecure channels, symmetric
Key cryptography is used
 However, symmetric schemes do not work without a shared k

(N

A secure key exchange algorithm is needed

CSEDA415 — Spring 2025



Diffie-Hellman (DH) key exchange

rPOSTERCH

* Named after Whitfield Diffie and Martin Hellman

* Key idea:
* Derive a shared secret key mathematically, rather than sending it
directly

CSEDA415 — Spring 2025



Intuitive example: Colored keys

rPOSTERCH

1. Alice shares a yellow key (public key) with Bob (and Eve)

a 0 3

Pubnc@ . @m Public

CSEDA415 — Spring 2025 6



Intuitive example: Colored keys

rPOSTERCH

2. Alice and Bob each select their own colored key (secret key)
and keep it to themselves

dh
ge 8
Public @ @m Public
Alice’s secret h h Bob’s secret

CSEDA415 — Spring 2025 7



Intuitive example: Colored keys

rPOSTERCH

3. Alice and Bob both mix the colors of the public key and their
own secret key, generating mixed keys

a

Public

XY

Alice’s secret

Mixed by Alice

|
|

Mixed by Bob

CSEDA415 — Spring 2025



Intuitive example: Colored keys

4. Alice and Bob exchange the mixed keys
* Eve can see the mixed keys

=

Alice’s secret

Mixed by Alice

T
'

Mixed by Bob

V-9 o

CSEDA415 — Spring 2025

rPOSTERCH

Public

Bob’s secret

Mixed by Bob

Mixed by Alice

V9% 8=



Intuitive example: Colored keys

rPOSTERCH

5. Finally, each party mixes the received mixed key with their
own secret key again, resulting in the same sync’ed key

A &
e )
© g >
Public @ @m Public
Alice’s secret m m Bob’s secret
Mixed by Alice W 4+ = h w — @ Mixed by Bob
Mixed by Bob I' o m Mixed by Alice

Sync’ed key Sync’ed key

CSEDA415 — Spring 2025 10



Intuitive example: Colored keys

rPOSTERCH

6. Eve cannot derive the sync’ed key without knowing
Alice’s or Bob’s secret keys

S {s)

? e

(o

)+=h e =

Sync’ed key Sync’ed key

Public Public

Alice’s secret Bob’s secret

Mixed by Alice Mixed by Bob

Mixed by Bob Mixed by Alice

199 o

CSEDA415 — Spring 2025 11



Intuitive example: Colored keys

rPOSTERCH

Some operations are easy to perform in one direction
but extremely hard to reverse

Easy: © > + @ = O Hard: G = ? 4 7

CSEDA415 — Spring 2025 12



Background: Number theory
» Greatest common denominator d = gcd(a, b):
* Largest integer d such that d divides a and d divides b

* Relatively prime (or, coprime)

* If gcd(a,b) = 1, then a and b are relatively prime
* Is 15 relatively prime to 287  Yes. gcd(15,28) =1
* Is 14 and 49 relatively prime? No. gcd(14,49) = 7

* Are 23 and 443 coprime”? Yes. Two prime numbers are always coprime
 Hint: 23 and 443 are prime numbers

CSEDA415 — Spring 2025 13



Diffie-Hellman key exchange

rPOSTERCH

1. Choose a prime num p and its generator g suchthatg <p

* Both p and g are shared (public keys)

» g is a generator of p if g* mod p can take any value in [1, ...,p — 1]

* Example:p =11

CSEDA415 — Spring 2025

gkmodp |i=0|i=1|i= [ = [ = i=5|i= [ = [ = i=9 | 10 |Generator?

2 mod 11| 1 2 4 8 5 10 9 7 3 6 1 Y

3tmod 11| 1 3 9 5 4 1 3 9 5 4 1 N

4 mod 11| 1 4 5 9 3 1 4 5 9 3 1 N

5tmod 11| 1 5 3 4 9 1 5 3 4 9 1 N

6imod11| 1 | 6 | 3 | 7 | 9 [ 10| 5 | 8 | 4 | 2 | 1 v |
- We canselectg =6

14



Diffie-Hellman key exchange

rPOSTERCH

2. Alice and Bob each choose a secret key Public ~ Secret
* Assume Alice’s secret key a = 15 @ p=11 a=15@=
g==6 b=8 @&

and Bob’s secret key b = 8

CSEDA415 — Spring 2025 15



Diffie-Hellman key exchange

rPOSTERCH

2. Alice and Bob each choose a secret key Public ~ Secret
* Assume Alice’s secret key a = 15 @ p=11 a=15@=
g==6 b=8 @&

and Bob’s secret key b = 8

3. Alice and Bob compute g* mod p where x is the secret key
e A= g*modp =6 mod 11

< Too large to be calculated by hand?
* B = g® modp=6%mod 11 7 y

CSEDA415 — Spring 2025 16



Diffie-Hellman key exchange

rPOSTERCH

* Note: Modular exponentiation

 We can compute x¥ mod n by breaking y down into powers of 2

ce.q.,6¥mod11>15=8+4+2+1

615 = 68Xx6*x62X6

6 mod11 =6

6% mod 11 = 36 mod 11 = 3

6% mod 11 = (6%)? mod 11 =3 mod 11 =9

68 mod 11 = (6*)? mod 11 = 9% mod 11 = 81 mod 11 = 4
Thus, 61 mod 11 = (4x9%3x6) mod 11 = 648 mod 11 = 10

CSEDA415 — Spring 2025 17



Diffie-Hellman key exchange

rPOSTERCH

2. Alice and Bob each choose a secret key Public ~ Secret
* Assume Alice’s secret key a = 15 @ p=11 a=15@=
g==6 b=8 @&

and Bob’s secret key b = 8

3. Alice and Bob compute g* mod p where x is the secret key
e Alice’s mixed key A = g% mod p = 61° mod 11 = 10
 Bob’s mixed key B = g? mod p = 68 mod 11 = 4

Modular exponentiation!

CSEDA415 — Spring 2025 18



Diffie-Hellman key exchange

4. Alice and Bob exchange their mixed keys
¢ A =6 mod11 =10
e B=6%mod 11 =4

CSEDA415 — Spring 2025

Public

p =11

g==o6
oA =10

rPOSTERCH

Secret

a=150=
b=8 &~

19



Diffie-Hellman key exchange

rPOSTERCH

5. Alice and Bob then can generate a common  Public  Secret
shared key k by raising the exchanged AP= 21 Z = éS:
mixed key to their respective secret keys @fl iy -

e Alice: k = B mod p = 41> mod 11 &= B = 4

* Bob: k = A? mod p = 108 mod 11

CSEDA415 — Spring 2025 20



Diffie-Hellman key exchange

rPOSTERCH

5. Alice and Bob then can generate a common  Public ~ Secret

shared key k by raising the exchanged AP= 21 Z = éS:
mixed key to their respective secret keys @fl _ 1o

e Alice: k = B mod p = 41> mod 11 &= B = 4
* Bob: k = A? mod p = 108 mod 11

415 1m0d 11 = 48%x4%4x4%2x4 mod 11

4mod11 =4

42 mod 11 =16 mod 11 =5

4* mod 11 = (4%)? mod 11 = 52 mod 11 = 25mod 11 =3
48 mod 11 = (4*)? mod 11 =9 mod 11 =9

CSEDA415 — Spring 2025 21



Diffie-Hellman key exchange

rPOSTERCH

5. Alice and Bob then can generate a common  Public ~ Secret

shared key k by raising the exchanged AP= 21 Z = éS:
mixed key to their respective secret keys @fl _ 1o

e Alice:k =B%*modp =4 mod11=1 @ @B = 4
* Bob: k = A? mod p = 10® mod 11

415 mo0d 11 = 48x44x42x4 mod 11 = 9x3x5%x4 mod 11 =1

4mod11 =4

42 mod 11 =16 mod 11 =5

4* mod 11 = (4%)? mod 11 = 52 mod 11 = 25mod 11 =3
48 mod 11 = (4*)? mod 11 =9 mod 11 =9

CSEDA415 — Spring 2025 22



Diffie-Hellman key exchange

rPOSTERCH

5. Alice and Bob then can generate a common  Public  Secret
shared key k by raising the exchanged AP= 21 Z = éS:
mixed key to their respective secret keys @fl iy -

e Alice:k =B%*modp =4 mod11=1 @ @B = 4

e Bob:k=A’ modp =108 mod11=1 @wm

10 mod 11 = —1 mod 11
108 mod 11 = (=1)8 mod 11 =1mod 11 =1

CSEDA415 — Spring 2025 23



Diffie-Hellman key exchange

rPOSTERCH

5. Alice and Bob then can generate a common  Public  Secret
shared key k by raising the exchanged AP= 21 Z = éS:
mixed key to their respective secret keys @fl B P
e Alice:k =B%*modp =4 mod11=1 @ @B = 4

e Bob:k=A’ modp =108 mod11=1 @wm

k=1 &

Alice and Bob have successfully generated a shared secret key k

CSEDA415 — Spring 2025 24



Diffie-Hellman key exchange

(P
e Can Eve deduce the shared secret key? Public — Secret
* Problem that Eve needs to solve: @ p= 21 Z _ 51;5:
* Givenp, g, A, and B, find a, b, and k such that 7 _ _
, A - e=»A=10 k=1 &=
A” modp =B modp =k. @B = 4

* Discrete log problem (DLP):
* Given p, g, and B = g% mod p, it is computationally difficult to find a,
especially for large prime number p
* g,9%modp =6%“mod 11 = 4 - Canyou find a?
* How about 43% mod 170141183460469231731687303715884105727 =
107658615995071204650478536027214115641 7

CSEDA415 — Spring 2025 25



Generalization of Diffie-Hellman key exchange

rPOSTERCH

* A large prime p and a generator g are shared

CSEDA415 — Spring 2025 26



Generalization of Diffie-Hellman key exchange

rPOSTERCH

* A large prime p and a generator g are shared

* Mixing:
* Alice chooses a secret integer a and computes A = g* mod p
» Bob chooses a secret integer b and computes B = g? mod p

CSEDA415 — Spring 2025 27



Generalization of Diffie-Hellman key exchange

rPOSTERCH

* A large prime p and a generator g are shared

* Mixing:
* Alice chooses a secret integer a and computes A = g* mod p
» Bob chooses a secret integer b and computes B = g? mod p

* Deducing the shared secret:
e Alice computes k = B% mod p = (gb)a mod p = g* mod p
» Bob computes k = A? mod p = (g*)? mod p = g*® mod p

CSEDA415 — Spring 2025 28



Generalization of Diffie-Hellman key exchange

rPOSTERCH

* A large prime p and a generator g are shared
* Mixing:
* Alice chooses a secret integer a and computes A = g* mod p
» Bob chooses a secret integer b and computes B = g? mod p
* Deducing the shared secret:
e Alice computes k = B% mod p = (gb)a mod p = g* mod p
» Bob computes k = A? mod p = (g*)? mod p = g*® mod p
* Eve knows p, g, A4, and B
* Eve cannot feasibly solve DLP to compute a nor b if p is large

CSEDA415 — Spring 2025 29



Generalization of Diffie-Hellman key exchange

rPOSTERCH

DH is secure against passive attacks

CSEDA415 — Spring 2025 30



Diffie-Hellman key exchange

rPOSTERCH

* Intended key exchange

a JpO:

Select Select b
Compute g“ mod p — — Compute g” mod p
| — |
Receive g¥ mod p < — Receive g mod p

Compute (g?) mod p Compute (g*)? mod p

Shared secret Shared secret

CSEDA415 — Spring 2025 31



Diffie-Hellman — Man in the Middle (MitM) attack

rPOSTERCH

 What if Mallory actively alters key exchange messages?

a g

Select Select m Select b
Compute g% mod p Compute g™ mod p Compute g” mod p

CSEDA415 — Spring 2025 32



Diffie-Hellman — Man in the Middle (MitM) attack

rPOSTERCH

 What if Mallory actively alters key exchange messages?

A L4 4

Select Select m Select b

Compute g% mod p >/ Compute g™ mod p \(fiompute g? modp
Receive g™ mod p Receive g“ mod p Receive g” mod p ¥ T—*Receive g mod p
Compute (g™)“ mod p + Compute (g“)™ mod p Compute (gb)m mod p ' Compute (g™)? mod p

CSEDA415 — Spring 2025 33



Diffie-Hellman — Man in the Middle (MitM) attack

rPOSTERCH

 What if Mallory actively alters key exchange messages?

A L4 e

Select Select m Select b

Compute g% mod p >/ Compute g™ mod p \(ACompute g” modp
Receive g™ mod p Receive g“ mod p Receive g” mod p ¥ 1T%Receive g™ mod p
Compute (g™)“ mod p + Compute (g“)™ mod p Compute (gb)m mod p ' Compute (g™)? mod p

|
|
|
|
I |
k= g™ modp | k=g™ modp k' = g™ modp ! k' = g™ modp
| |
I |
|

Mallory keeps_two shared keys: k for Alice, and k’ for Bob, respectively

CSEDA415 — Spring 2025 34



Diffie-Hellman — Man in the Middle (MitM) attack

rPOSTERCH

* Then, Mallory can tamper with messages

A L4 e

Select Select m Select b

Compute g% mod p >/ Compute g™ mod p \(ACompute g” modp
Receive g™ mod p Receive g“ mod p Receive g” mod p ¥ TReceive g™ mod p

Compute (g™)" mod p i Compute (g“)™ mod p Compute (gb)m mod p i Compute (gm)b mod p
| |
| |
k=g™" modp ! k=g™" modp k' = g™ modp ! k'= g™ modp
| |
E(k,msg) — D(k, E(k, msg)) :
| |
| |

~ Mallory can decrypt Alice’s msg using k

CSEDA415 — Spring 2025 35



Diffie-Hellman — Man in the Middle (MitM) attack

rPOSTERCH

* Then, Mallory can tamper with messages

A L4 e

Select Select m Select b

Compute g% mod p >/ Compute g™ mod p \(ACompute g” modp
Receive g™ mod p Receive g“ mod p Receive g” mod p ¥ TReceive g™ mod p

Compute (g™)“ mod p i Compute (g“)"™ modp Compute (gb)m mod p i Compute (g™)? mod p
| |
| |
E(k,msg) —> D(k,E(k,msg)) E(k',msg") — D(k',E(k’,msg"))

Mallory can modify the msg to msg’ and encrypt it using k' for Bob

CSEDA415 — Spring 2025 36



Diffie-Hellman — Man in the Middle (MitM) attack

rPOSTERCH

* Then, Mallory can tamper with messages

A L4 e

Select Select m Select b

Compute g% mod p >/ Compute g™ mod p \(ACompute g” modp
Receive g™ mod p Receive g“ mod p Receive g” mod p ¥ 1T%Receive g™ mod p
Compute (g™)“ mod p + Compute (g“)™ mod p Compute (gb)m mod p ' Compute (g™)? mod p

|
|
|
|
|
k= g™ modp | k=g™ modp k' = g™ modp k' = g™ modp

|

|

E(k,msg) > D(k, E(k, msg)) E(k',msg") > D(k',E(k',msg"))

Alice and Bob are tricked into believing that they are securely communicating

CSEDA415 — Spring 2025 37



Diffie-Hellman — Man in the Middle (MitM) attack

rPOSTERCH

DH key exchange is insecure against active attacks

CSEDA415 — Spring 2025 38



Key exchange in the presence of active attacker

rPOSTERCH

* When Mallory (an active attacker) exists, it is impossible for
Alice and Bob to start from scratch and exchange messages
to derive a shared key unknown to the adversary

* Why?
* Bob cannot distinguish Alice from Mallory because DH does not
provide authentication

e Solution:

* Alice and Bob needs an “information advantage” over the adversary
e Typically, in the form of long-lived keys (e.g., previously shared keys)
* More on this next week!

CSEDA415 — Spring 2025 39



Cryptography roadmap

rPOSTERCH

Scheme
Goal

Symmetric Key

Asymmetric Key

Confidentiality

One Time Pad (OTP)
Block ciphers (DES, AES)
Stream ciphers

DH secure key exchange
* ElGamal encryption
* RSA encryption

Integrity
&
Authentication

* Message Authentication
Code (MAC)

* Digital signature

CSEDA415 — Spring 2025

40



Asymmetric Cryptography
(Public key Scheme)

CCCCCCC — Spring 2025 rPOSTEREPLCH



Motivation

rPOSTERCH

* Another limitation of symmetric key schemes
* The number of symmetric keys needed grows exponentially

- (’;) = n(n2—1) keys are needed for n people to securely communicate
using symmetric key schemes

CSEDA415 — Spring 2025 42



Solution: Public-key cryptography
* |dea:

* Utilize an asymmetric key pair < ky, ks >, where

* k,: Public key that is publicly released
* k.. Secret key, which is kept secret
* Any sender can encrypt a message using the receiver’'s public key
* ¢ =E(ky,,m)
* Only the receiver can decrypt the ciphertext using his or her own
private key
*m = D(kg,c)

CSEDA415 — Spring 2025 43



ElGamal encryption
* An extension of Diffie-Hellman key exchange

* DH only provides only a shared secret derivation

* ElGamal supports direct encryption and decryption on top of DH key
exchange

CSEDA415 — Spring 2025 44



ElGamal encryption

rPOSTERCH

* Alice chooses a secret key g« ‘@’
* Alice generates a publickey A = g modp B A
=g modp ~ m

* p (prime number) and g (generator) are public

* Bob wants to encrypt m for Alice

CSEDA415 — Spring 2025 45



ElGamal encryption

* Alice chooses a secret key
* Alice generates a public key A = g“ mod p

* Bob wants to encrypt m for Alice

* Bob picks a random r and computes R = g" mod p
* Bobsendsc=m X A" mod p and R to Alice

CSEDA415 — Spring 2025

rPOSTERCH

.,
L
L
.
L
™
e,
L
L
e,
L

.
.,
.
3
‘e
i
.
‘e
‘o
‘e
.
‘e

.
..
----
.
.

.
.
"""
..
.

46



ElGamal encryption

* Alice chooses a secret key g« ‘@’
* Alice generates a publickey A = g“ mod p pe gty :1
* Bob wants to encrypt m for Alice R~ ’
» Bob picks a random r and computes R = g" modp * ..... ; :if,fé;

* Bobsendsc=m X A" mod p and R to Alice

* Alice can decrypt ¢ by:
ccX(R)T=mxA"XR “modp=mx(g*) x(g")"“modp
=mmodp=m

CSEDA415 — Spring 2025

rPOSTERCH

47



ElGamal encryption

rPOSTERCH

* Alice chooses a secret key
* Alice generates a public key A = g“ mod p

* Bob wants to encrypt m for Alice

* Bob picks a random r and computes R = g" mod p
* Bobsendsc=m X A" mod p and R to Alice

= R =g modp

" ¢ = mxA" modp

* Alice can decrypt ¢ by:
ccX(R)T=mxA"XR “modp=mx(g*) x(g")"“modp
=mmodp=m

Security: Given A, R, and ¢, Eve cannot recover m (DLP!)

CSEDA415 — Spring 2025 48



ElGamal encryption

rPOSTERCH

* Example
* Public parameters:p =13, g = 2
* Alice’s secret key a = 3 // randomly chosen

e Alices’ publickey A = g“ mod p = 23 mod 13 = 8

" c=mxA" modp

* Bob’s message‘m = 11‘
* Bob’srandomr =5

« Bob computes R = g" mod p = 2% mod 13 = 6
* Bob encryptsm: ¢ =m x A" mod p = 11 X 8> mod 13 = 10
 Alice receives R and ¢ from Bob and decrs c to obtain m

*m=cx (Rt modp =10 x 673 mod 13 =|11| Correctly decrypted!

Using Python: 10 * pow(6, -3, 13) % 13
CSEDA415 — Spring 2025 49



Summary of ElGamal encryption
* ElGamal encryption provides confidentiality
* Discrete logarithm problem

* ElGamal encryption does not provide integrity
* Mallory can tamper with the ciphertext without decrypting it
* e.qg.,
* Mallory (MitM) receives R and ¢ from Bob

* Mallory sends R and ¢’ = ¢ X 2 to Alice
 Alice decrypts ¢’ and retrieves m X 2 mod 13

CSEDA415 — Spring 2025 50



Cryptography roadmap

rPOSTERCH

Scheme
Goal

Symmetric Key

Asymmetric Key

Confidentiality

One Time Pad (OTP)
Block ciphers (DES, AES)
Stream ciphers

DH secure key exchange
ElGamal encryption
* RSA encryption

Integrity
&
Authentication

* Message Authentication
Code (MAC)

* Digital signature

CSEDA415 — Spring 2025

51



RSA Encryption

rPOSTERCH

* |dea: Prime factorization of large numbers is hard
* Q) What are the prime factors of 104037

CSEDA415 — Spring 2025 52



RSA Encryption

rPOSTERCH

* |dea: Prime factorization of large numbers is hard

* Q) What are the prime factors of 104037
* Nalve algorithm:

# N = pg where p and g are primes
def factorize(N):
for 1 in range(2, sqrt(N)):
tf N mod 1 == 0:
p =1
q=N/1
return (p, q)

This algorithm works, but takes time 0(v/N)
e.g., using a 2048-bit N, naive factorization takes 0 (V220438)

CSEDA415 — Spring 2025 53



RSA Encryption

rPOSTERCH

* Choose two large primes p and q

 Compute public N = pq

 Compute the totient, T=(p—1)(gq — 1)

* Select public key e, such that e is relatively prime to T

» Compute private key d = e~! mod T // modular inverse of e
ced =1modT

CSEDA415 — Spring 2025 54



RSA Encryption

rPOSTERCH

* Encryption function:
¢ E(e, m) =m®mod N =c / Anyone can encrypt using the public key e
* Decryption function:
. D(d’ C) — c% mod N // Only the receiver can decrypt using the private key d

» Magically, m = ¢% mod N holds:
e ¢*mod N = (mé)%modN

= m®® mod N ..« ed = kT + 1 becauseed =1mod T
= m*TmY mod N
= mmod N ... m' = 1 mod N by Euler’s theorem*

*If m and N = pq are relatively prime, then m! = 1 mod N whereT = (p — 1)(q — 1)

CSEDA415 — Spring 2025 55



RSA example

rPOSTERCH

ep=7,q =11

e N =77

cT=((m-1)(@q@—1) =6x10 =60

» Select public key e that is coprimeto 60 2 e =7
* Private keyd = e 1 mod T = 771 mod 60 = 43

* Problem: Find e such that 7Xe mod 60 = 1
* Can be obtained by the Extended Euclid’s algorithm

* In Python: pow(7, -1, 60)

CSEDA415 — Spring 2025 56



RSA example

rPOSTERCH

e Given
e Secret.tp=7,q =11,d =43
e Publicc N =77,e=7

* Plaintextm = 8

* Encryption
e c=mfmodN =8 mod77 =57

* Decryption
em=c%mod N =57*3 1mod 77 = 8

CSEDA415 — Spring 2025 57



RSA example

* Given
e Secret.tp=7,q =11,d =43
e Publicc N =77,e=7

* Plaintext m = 8

* Encryption
e c=mfmodN =8 mod77 =57

* Decryption
e m = c%mod N = 57*3 mod 77 = 8 & Correctly decrypted!

(Use modular exponentiation
for computation)

CSEDA415 — Spring 2025 58



RSA security — Confidentiality

rPOSTERCH

* RSA provides confidentiality based on the hardness of
integer factorization problem

* Steps for Eve to decipher ¢ given public N and public key e,
« To compute m = c% mod N, Eve needs to find the secret key d

e Toderived = et mod T, Eve needs to find T

e TofindT =(p—1)(q —1), Eve needs to find p and g

* To find p and g such that N = pq, Eve needs to prime factorize N

 However, there is no polynomial time algorithm that can factor a large integer
N to find its prime factors p and q

CSEDA415 — Spring 2025 59



RSA security — Integrity

* RSA does not guarantee integrity
e Still susceptible to MitM attacks

a

@

rPOSTERCH

s

“Give me your pubkey e”

Storee <

Encrypt m using e’ <

Generate e’ and send

|
|
1
1
1
1
1
1
1
1
1
1
Send resulting ¢
1
|
|
|
|
|
|
|
|
|

CSEDA415 — Spring 2025

» Decrypt c using d’
Tamper with m to procude m’

Encrypt m' using stored e

>
Generate e and send

Send ¢’

» Decrypt and getm’

60



Cryptography roadmap

rPOSTERCH

Scheme
Goal

Symmetric Key

Asymmetric Key

Confidentiality

One Time Pad (OTP)
Block ciphers (DES, AES)
Stream ciphers

DH secure key exchange
ElGamal encryption
RSA encryption

Integrity
&
Authentication

* Message Authentication
Code (MAC)

* Digital signature

CSEDA415 — Spring 2025

61



Questions?

CCCCCCC — Spring 2025 rPOSTEREPLCH



