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Administrivia

• No in-person class on Thursday, Mar 27
• I will be out of town for another presentation
• A lecture recording will be uploaded

• Lab 03 is out:
• Due: Friday, April 4

• 10-minute proposal presentations:
• When: Thursday, April 3, during regular class time

• Midterm exam:
• When: Tuesday, April 8, during regular class time
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Overview of Lab 03

uRC4 (a variant of RC4)

Secret key (64 bytes)

Ciphertext ① Given

③ Play game

④ Achieve over 
3,932,156 points

to get a flag

Phase 1: uRC4 service (server.py) Phase 2: target

② Find the 
        secret key



4CSED415 – Spring 2025

Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• DH secure key exchange
• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication 
Code (MAC) • Digital signature

✅
✅
✅

✅
✅
✅

Additional Tool
• Hash functions
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Hash Functions
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New problem: Data integrity

• Encryption does not guarantee integrity (Lectures 9 & 10)

• How do we ensure that Alice’s message was not altered in 
transit? 
• In other words, how do we verify 𝑐% == 𝑐& ?

“Love you Bob” “Hate you Bob”

??
𝑐% 𝑐&
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Hash functions

• Hash function 𝐻
• Takes a message 𝑚 of arbitrary length
• Creates a message digest ℎ of fixed length

• ℎ is also called hash, hash value, hash digest, …

• Key properties
• Correctness: 𝐻 𝑚  should be deterministic

• Hashing 𝑚 should always produce the same ℎ
• Efficiency: 𝐻 𝑚  should be efficient

𝐻(𝑚)

𝑚

ℎ=F89CBD46
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Hash function outputs a fixed-length hash

• For example, MD5 is a “128-bit hash function”
• Produces 16-byte hash digests, e.g.,

• "a"       à 0cc175b9c0f1b6a831c399e269772661
• "aa"      à 4124bc0a9335c27f086f24ba207a4912
• "a"*2048  à b7ea2d21ad2ef3e28085d30247603e0b

• Confirmation:
Arbitrary-length input Fixed-length (16-byte) output

import hashlib
print(hashlib.md5(b"a").hexdigest())
print(hashlib.md5(b"aa").hexdigest())
print(hashlib.md5(b"a" * 2048).hexdigest())
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Typical usage of hash function

• Scenario: File integrity verification
• Alice and Bob both downloaded a 40-GB movie file from the internet
• They want to verify if the two files are identical
• Naïve way:

1. Alice sends the file to Bob
2. Bob compares Alice’s file with his file

à Waste of network bandwidth and 
computational powers L

movie_4k.mp4 (40 GB) movie_4k.mp4 (40 GB)
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Typical usage of hash function

• Scenario: File integrity verification
• Alice and Bob both downloaded a 40-GB movie file from the internet
• They want to verify if the two files are identical
• Using a hash function:

movie_4k.mp4 (40 GB) movie_4k.mp4 (40 GB)

1. Alice sends 𝐻 𝑚𝑜𝑣𝑖𝑒  (16 bytes)
2. Bob compares the hash digests

128-bit hash digest 128-bit hash digest
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Building hash functions

• Underlying method: Merkle-Damgård construction (1979)
• A method of building a cryptographic hash function 𝐻 from 

collision-resistant one-way compression function 𝐶 
• Used by many hash functions, including MD5, SHA-1 and SHA-2 families
• 𝑚 = 𝑚𝑏! || 𝑚𝑏" || … || 𝑚𝑏#   (𝑚𝑏$: 𝑖-th message block, ||: Concatenation)

𝐶 𝐶 𝐶

𝑚𝑏!

𝐼𝑉

𝑚𝑏" 𝑚𝑏#

𝐶…
𝐻(𝑚)

𝑚𝑏#%!

𝐶 always outputs a fixed length output(IV: Initialization Vector,
algorithm-specific)
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Cryptographic hash functions?

• Cryptographic hash functions are secure hash functions that 
satisfy two properties:
• One-wayness (OW)

• Definition: For any given hash value ℎ, it is computationally infeasible 
to find 𝑚 such that 𝐻 𝑚 = ℎ

• Collision resistance (CR)
• Definition: It is computationally infeasible to find a pair of plaintexts 𝑚! and 𝑚"

such that 𝐻 𝑚! = 𝐻(𝑚")
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Computationally infeasible?

• Classification of problems/computations
• Easy: If there exists an algorithm that solves the problem in 𝑝𝑜𝑙𝑦(𝑛) 

time, where 𝑛 is the bit length of the input
• Running time is bound by a polynomial function (e.g., 𝑛") of the input size

• Hard: If, to the best of our knowledge, no polynomial-time algorithm 
exists for solving the problem
• e.g., Best known algorithms run in exponential time (e.g., 2#), so as 𝑛 grows, 

the required computations quickly become impractical
• “Computationally infeasible” falls under this category
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One-wayness (OW)

• Informally:
• Given an output ℎ, it is infeasible to find any 𝑚 such that 𝐻(𝑚) = ℎ

• Formally:
• 𝐻 is one-way, if for all polynomial-time adversary 𝐴 

who randomly selects 𝑚′ from the plaintext domain,

• Negligible: Attacker’s advantage of winning decreases quickly as input size 𝑛 
grows. If the problem is hard (computationally infeasible), then the chance of 
winning is negligible

𝐴𝑑𝑣'() 𝐴 = 𝑃𝑟𝑜𝑏[𝐻 𝑚′ = ℎ] is negligible
“Advantage”
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OW examples

• Is 𝐻 𝑥 = 0 a one-way hash function?

• Is the following summation checksum one-way?

OW: Is 𝐴𝑑𝑣'() 𝐴 = 𝑃𝑟𝑜𝑏[𝐻 𝑚′ = ℎ] negligible?

C S E D
4 1 5 0

Message Ascii-hex format

43 53 45 44
34 31 35 30

Checksum: 77 84 7A 74

No. 𝐴 can easily find multiple 𝑚′s. 𝑃𝑟𝑜𝑏 𝐻 𝑚* = 0 = 1

No. 𝐴 can easily find “CSED4150” (and other 𝑚′s) given 77847A74 

+
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OW examples

• If 𝐻 and 𝐺 are length-preserving hash functions that are OW,
is 𝐹 𝑥 = 𝐻 𝑥 ⊕ 𝐺(𝑥) one-way? (⊕: XOR)

• If 𝐻 𝑥 = 𝑥	𝑚𝑜𝑑	𝑝 where 𝑝 is a large, pre-selected prime 
number, is it one-way?

OW: Is 𝐴𝑑𝑣'() 𝐴 = 𝑃𝑟𝑜𝑏[𝐻 𝑚′ = ℎ] negligible?

No. If 𝐻 = 𝐺, then 𝐹 𝑥 = 0. Constant function is not OW

No. 𝐴 can easily find multiple multiple 𝑚′s that satisfy 𝑚*	𝑚𝑜𝑑	𝑝 = ℎ 
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Collision resistance (CR)

• Collision: Two different inputs resulting in the same output
• 𝑚% ≠ 𝑚& and 𝐻 𝑚% = 𝐻(𝑚&)

• Can a hash function have no collision?
• No. If the input domain is larger than 2+ for a 𝑛-bit hash function, 

there must exist collisions (by the pigeonhole principle)
• Collision resistance is not about having no collisions!
à It is about making it infeasible to find collisions
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Collision resistance (CR)

• Informally:
• It is computationally infeasible to find a pair of plaintexts 𝑚% and 𝑚&

such that 𝐻 𝑚% = 𝐻(𝑚&)

• Formally:
• 𝐻 is collision-resistant, if for all polynomial time adversary 𝐴,

𝐴𝑑𝑣',- 𝐴 = 𝑃𝑟𝑜𝑏[𝐻 𝑚% = 𝐻(𝑚&)] is negligible where 𝑚% ≠ 𝑚&
“Advantage”
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CR examples

• Is 𝐻 𝑥 = 0 collision-resistant?

• If 𝐻 𝑥  is sum of bits in 𝑚	𝑚𝑜𝑑	2 (i.e., parity bit), is 𝐻 CR?

CR: Is 𝐴𝑑𝑣',- 𝐴 = 𝑃𝑟𝑜𝑏[𝐻 𝑚% = 𝐻(𝑚&)] negligible where 𝑚% ≠ 𝑚&?

No. Every pair of < 𝑚%, 𝑚& > is a collision.

No. A counter-example: 𝑚% = 01, 𝑚& = 10
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CR examples

• Let 𝐻: 0, 1 !"# → 0, 1 $!% be defined by

• Q) Is 𝐻 collision-resistant?

CR: Is 𝐴𝑑𝑣',- 𝐴 = 𝑃𝑟𝑜𝑏[𝐻 𝑚% = 𝐻(𝑚&)] negligible where 𝑚% ≠ 𝑚&?

𝐻 𝑥 = 𝐻 𝑥.||𝑥/ = 𝐴𝐸𝑆 𝑥. ⊕𝐴𝐸𝑆(𝑥/)
( ||: Concatenation )

(𝐻 is a function that maps a 256-bit input to a 128-bit output)

No. A counter-example: 𝑚% = 1010	 0001, 𝑚& = 0001	 1010
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CR examples

• Is CRC-32 (Cyclic Redundancy Check) collision-resistant?
• CRC-32 is widely used for calculating checksum for error detection.

It hashes input byte sequence to a 32-bit value

CR: Is 𝐴𝑑𝑣',- 𝐴 = 𝑃𝑟𝑜𝑏[𝐻 𝑚% = 𝐻(𝑚&)] negligible where 𝑚% ≠ 𝑚&?

No. Because of its small output size, the birthday paradox implies that 
we can find collisions with about a 50% chance in only 65536 trials!
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CR examples

• Demo: Finding hash collision of CRC-32
• Hashing 123,565 English words found online:

CR: Is 𝐴𝑑𝑣',- 𝐴 = 𝑃𝑟𝑜𝑏[𝐻 𝑚% = 𝐻(𝑚&)] negligible where 𝑚% ≠ 𝑚&?

import os, zlib

filename = "nordpass-word-list.txt"
url = "https://gist.githubusercontent.com/atoponce/4c4692940522947b8611d33d7cf3225d/raw/cd078528f2c2e5dbb8c750f7b2d1a9508c094840"
os.system(f"wget {url}/{filename}")

with open(filename, "r", encoding="utf-8") as f:
    lines = f.readlines()

crc_dict = dict()
for line in lines:
    word = line.split("\t")[-1].strip().encode("utf-8")
    c = zlib.crc32(word)
    if c not in crc_dict:
        crc_dict[c] = [word]
    else:
        crc_dict[c].append(word)
        print("collision!", crc_dict[c])
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A generic attack for finding collisions

• Birthday problem:
• If you choose a group of 𝑁 random people, what is the probability 

that at least one pair of individuals have the same birthday?

• Birthday pardox:
• If 𝑁 = 23, the probability is 50%. Only 23 people!

• Event 𝐸: Everyone has different b-day à 365×364×⋯× 365 − 22 = 365𝑃"(
• Possible outcomes: Each person has 365 choices à 365"(

• Prob. that no one shares the birthday: 𝑃 𝐸 = !"#)!"
(*+!" ≈ 0.492

• Therefore, prob. that at least two people share the b-day: 1 − 𝑃 𝐸 ≈ 50%



24CSED415 – Spring 2025

A generic attack for finding collisions

• Birthday attack
• Similarly, the probability of detecting a hash collision via brute-forcing 

is much higher than we expect
• Approximation:

• When there are 2# possible data, if we have 2# data, 
the probability to find a collision is > 50%
• In other words, one can find a collision for 50% chance after 2# trials
• Birthday collision: 365 total days à 𝑛 = 9 bits to represent 365 

                              à 2, = 22.6 à approximately 23 trials for 50% chance
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A generic attack for finding collisions

• Collision-resistance of a 𝑛-bit hash function is bounded by 2&

• Cryptanalysis of hash functions

Function n Trials needed by
birthday attack Existing attacks

MD4 128 2!" < sec
MD5 128 2!" 1 min
SHA-1 160 2#$ 2!% trials (2005)
SHA-1 160 2#$ 2!&.( trials (2017)

SHA-256 256 2()# -

Attacks requiring less trials than B-day attack are considered feasible attacks
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MD5 hash

• MD5
• An old standard hash function without collision-resistance
• Generates 128-bit hash digests

• Severe weaknesses have been discovered
• e.g., Chosen-prefix collisions attacks (Marc Stevens, et al.)

• Start with two arbitrary plaintexts 𝑚! and 𝑚"
• One can compute suffixes 𝑠! and 𝑠" such that 𝑚𝑑5(𝑚!||s!) = 𝑚𝑑5(𝑚"||𝑠") 

in only 250 trials
• Using this approach, a pair of different files (e.g., jpeg) with the same MD5 

hash value can be computed
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Collision in practice – MD5 is completely broken

• Download ship.jpg and plane.jpg from 
https://natmchugh.blogspot.com/2015/02/create-your-own-
md5-collisions.html

import hashlib

f1 = open("ship.jpg", "rb").read()
f2 = open("plane.jpg", "rb").read()

print(hashlib.md5(f1).hexdigest())
print(hashlib.md5(f2).hexdigest())

Both files are hashed to 253dd04e87492e4fc3471de5e776bc3d

https://natmchugh.blogspot.com/2015/02/create-your-own-md5-collisions.html
https://natmchugh.blogspot.com/2015/02/create-your-own-md5-collisions.html
https://natmchugh.blogspot.com/2015/02/create-your-own-md5-collisions.html
https://natmchugh.blogspot.com/2015/02/create-your-own-md5-collisions.html
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CR vs OW

• Does collision-resistance imply one-wayness?
• It does not

e.g., 𝐻 𝑥 = 𝑥 is CR, but not OW 

• Does one-wayness imply collision-resistance?
• It does not

e.g., 𝐻 𝑥  is a secure hash function, which is one-way.
        We can build 𝐺 𝑥 = 𝐻(𝑥-𝑥!…𝑥#%") (ignores the last bit of 𝑥)

à𝐺(𝑥) is still OW because it is hard to find 𝑥 from 𝐺(𝑥) if 𝑛 is large
àHowever, 𝐺(𝑥) is not CR. 𝐺 𝑥-𝑥!…𝑥#%"0 = 𝐺(𝑥-𝑥!…𝑥#%"1)

*Notation: 𝑥 = 𝑥!𝑥"𝑥#…𝑥$%" (𝑥& : 𝑖-th bit of 𝑥)
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Using hash functions for integrity

• Scenario
• Microsoft publishes a new version of vscode
• Alice downloads the installer
• How does she verify that no one has tampered with it in transit?

• In other words, how can she verify the installer’s integrity?
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Using hash functions for integrity

• e.g., vscode download site
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Using hash functions for integrity

• e.g., vscode download site
SHA-256 hashes
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Using hash functions for integrity

• Method
• Microsoft hashes the installer binary with SHA-256 and publishes 

the hash digests on its website
• Alice hashes the installer binary she downloaded with SHA-256 and 

checks if the hash matches the hash on the website

• Security
• If Alice downloads a malicious program, the hash would not match
• An attacker cannot create a malicious program with the same hash as 

the original installer (SHA-256 is collision-resistant)
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Using hash functions for integrity

• Another scenario
• Alice and Bob want to communicate over an insecure channel and 

verify integrity of their messages
• Mallory can tamper with the messages
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Using hash functions for integrity

• Method
• Alice sends her message with its hash digest over the channel
• Bob receives the message and computes a hash of the message
• Bob verifies that the hash he computed matches the hash sent by 

Alice

𝑚 = “Love you, Bob”
𝐻(𝑚) = 9dd06d0ad4af07a431c9a20f1510d4cf

𝑚 || 𝐻(𝑚) 𝑚 || 𝐻(𝑚)

𝐻(𝑚) matches.
Not tampered!
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Using hash functions for integrity

• Method
• Alice sends her message with its hash digest over the channel
• Bob receives the message and computes a hash of the message
• Bob verifies that the hash he computed matches the hash sent by 

Alice

𝑚 = “Love you, Bob”
𝐻(𝑚) = 9dd06d0ad4af07a431c9a20f1510d4cf

𝑚 || 𝐻(𝑚) 𝑚′ || 𝐻(𝑚′)

Problem: Mallory can modify BOTH
𝑚′ = “Hate you, Bob”
𝐻(𝑚′) = 8fdc1ad05c30b8311f687b04c61e81ef

𝐻(𝑚′) matches.
Not tampered!
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Do hash functions provide integrity?

• Not necessarily
• Microsoft website à Mallory can compromise Microsoft’s web servers 

and modify 𝐻(𝑣𝑠𝑐𝑜𝑑𝑒)
• Communication à Mallory can modify 𝑚 to 𝑚′ and 𝐻 𝑚  to 𝐻(𝑚*)

• Main issue: Hash functions are keyless and deterministic
• No secret key is used as input for hash functions, so any attacker can 

compute the hash of any value

Then, how can we utilize hash to design schemes that provide integrity?
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Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• DH secure key exchange
• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication 
Code (MAC) • Digital signature

✅
✅
✅

✅
✅
✅

Additional Tool
• Hash functions✅
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Message Authentication Code
(MAC)



39CSED415 – Spring 2025

Goal: Providing integrity

• Reminder: We are in the symmetric-key setting
• Alice and Bob share a secret key
• Attacker does not know the key

• Idea: Attach some piece of information to verify that 
someone with the key is the sender of a message
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Message Authentication Code (MAC)

• Designed to provide both integrity and authenticity
• Setting
• Alice sends message 𝑚 and tag 𝑡 = 𝑀𝐴𝐶 𝑘,𝑚  where 𝑘: secret key
• Bob recomputes 𝑀𝐴𝐶(𝑘,𝑚) and verifies if the result matches 𝑡
• If the MACs match, Bob is confident that 𝑚 has not been altered

𝑚

MAC𝑘 𝑡 MAC 𝑘

𝑚 𝑡 𝑚 𝑡 𝑡
Verify
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Hash function vs MAC

• Hash: Keyless

• MAC: Keyed

𝐻(𝑚)𝑚 ℎ

𝑀𝐴𝐶(𝑘,𝑚)𝑚 𝑡

𝑘
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Evaluating the security of MAC

• “Unforgeability”: MAC is unforgeable under chosen msg 𝑚 if
• A polynomial time adversary can see some number of < 𝑚, 𝑡 > pairs
• Without knowing the key 𝑘,

it is infeasible to find a message 𝑚 and its MAC tag 𝑡
such that 𝑡 = 𝑀𝐴𝐶 𝑘,𝑚
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Evaluating the security of MAC

• Example: Is block-cipher-based MAC secure?
• 𝐸 is a 𝑛-bit block cipher using key 𝑘

𝐸 𝐸 𝐸

𝑚!𝑚"…𝑚$%" 𝑚$…𝑚#$%"

⊕

𝑡

𝑘 𝑘 𝑘
Is this MAC unforgeable?

1. Adversary selects plaintext 0*||1* and 
obtains 𝑡 = 𝑀𝐴𝐶(𝑘, 0*||1*)

2. Adversary found 𝑚 = 1*||0* and its tag 𝑡 
such that 𝑡 = 𝑀𝐴𝐶(𝑘, 1*||0*)

à Not unforgeable (i.e., no integrity)
MAC

(0000…01111… .1)

(First 𝑛 bits of 𝑚)
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Constructing MAC using hash functions

• Secret prefix MAC:
• 𝑀𝐴𝐶@A = 𝐻(𝑘||𝑚)

• Secret suffix MAC:
• 𝑀𝐴𝐶@@ = 𝐻(𝑚||𝑘)

• Nested MAC:
• 𝑁𝑀𝐴𝐶 = 𝐻 𝑘%	||	𝐻 𝑘&||𝑚

• Hash-based MAC:
• 𝐻𝑀𝐴𝐶 = 𝐻 𝑘*⊕𝑜𝑝𝑎𝑑	||	𝐻 𝑘*⊕ 𝑖𝑝𝑎𝑑	||	𝑚



45CSED415 – Spring 2025

Constructing MAC using hash functions

• Secret prefix MAC: 𝑀𝐴𝐶'( = 𝐻(𝑘||𝑚)
• Recall: Merkel-Damgård transform

𝐶 𝐶 𝐶

𝑘||𝑚𝑏!

𝐼𝑉

𝑚𝑏" 𝑚𝑏#

𝐶…
𝐻(𝑘||𝑚)

𝑚𝑏#%!

Expectation: Mallory cannot compute 𝐻(𝑘||𝑚) from 𝑚, as he does not know 𝑘
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Constructing MAC using hash functions

• Secret prefix MAC: 𝑀𝐴𝐶'( = 𝐻(𝑘||𝑚)
• Recall: Merkel-Damgård transform

𝐶 𝐶 𝐶

𝑘||𝑚𝑏!

𝐼𝑉

𝑚𝑏" 𝑚𝑏#

𝐶…
𝐻(𝑘||𝑚)

𝑚𝑏#%!

Reality: Vulnerable to length extension attack
• Given 𝑚 and 𝐻(𝑘||𝑚), Mallory can append 𝑎 to 𝑚 to obtain 𝑚: = 𝑚||𝑎.
• Mallory can compute its MAC tag 𝐻(𝑘||𝑚:) = 𝐻(𝑘||𝑚||𝑎) from the 𝐻(𝑘||𝑚).
• Mallory successfully obtains < 𝑚, 𝑡 >	=	< 𝑚||𝑎, 𝐻(𝑘||𝑚||𝑎) > without knowing 𝑘

𝐶

𝑎

𝐻(𝑘||𝑚′)

(Extra data)
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Constructing MAC using hash functions

• Secret suffix construction: 𝑀𝐴𝐶'' = 𝐻(𝑚||𝑘)
• There is no known attack for secret suffix construction
• However, its unforgeability has not been proven

𝐶 𝐶 𝐶

𝑚𝑏!

𝐼𝑉

𝑚𝑏" 𝑘||𝑝𝑎𝑑

𝐶…
𝐻(𝑘||𝑚)

𝑚𝑏#



48CSED415 – Spring 2025

Constructing MAC using hash functions

• Nested MAC: 𝐻 𝑘$	||	𝐻 𝑘!||𝑚
• Prevents length extension attacks by hashing twice
• It is proven that if two keys (𝑘% and 𝑘&) are different, NMAC is 

unforgeable
• Proof omitted

• Practical issues of NMAC
• Need two different keys (weaker security)
• Two keys need to be the same length as hash digest (constraint)
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Constructing MAC using hash functions

• Hash-based MAC: 𝐻𝑀𝐴𝐶 = 𝐻 𝑘*⊕𝑜𝑝𝑎𝑑	||	𝐻 𝑘*⊕ 𝑖𝑝𝑎𝑑	||	𝑚
• Improvement over NMAC
• 𝑘′: 𝑛-bit version of 𝑘 where 𝑛 is the length of hash digest

• If 𝑘 is smaller than 𝑛 bits, 𝑘: = 𝑘||0#% ; , i.e., pad 𝑘 with 0’s to make it 𝑛 bits
• Otherwise, 𝑘: = 𝐻(𝑘), i.e., hash 𝑘 to make it 𝑛 bits

• Two different keys can be derived from 𝑘′
• Outer pad (𝑜𝑝𝑎𝑑): 0x5c repeated until the length becomes 𝑛 bits
• Inner pad (𝑖𝑝𝑎𝑑): 0x36 repeated until the length becomes 𝑛 bits

• Two rounds of hashing with two keys
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Evaluating the security of HMAC

• Hash-based MAC (HMAC):
• 𝐻 𝑘*⊕𝑜𝑝𝑎𝑑	||	𝐻 𝑘*⊕ 𝑖𝑝𝑎𝑑	||	𝑚
• HMAC is unforgeable under chosen message attack

• A polynomial attacker cannot create 𝑚 and valid 𝑡 = 𝐻𝑀𝐴𝐶(𝑘,𝑚) without 
knowing the secret key 𝑘 (proof omitted)

• HMAC is one of the most widely standardized and used 
cryptographic constructs
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Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• DH secure key exchange
• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication 
Code (MAC) • Digital signature

✅
✅
✅

✅
✅
✅

Additional Tool
• Hash functions✅

✅

Can we achieve both
at the same time?
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Authenticated Encryption
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Confidentiality and integrity/authenticity goals

• Encryption schemes provide confidentiality, but not integrity
• MACs provide integrity/authenticity, but not confidentiality
à Can we achieve both at the same time?
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Authenticated encryption (AE)

• Definition
• A scheme that simultaneously guarantees confidentiality and integrity 

of a message

• Existing building blocks for AE:
• 𝐸 𝑘%, 𝑚  and 𝐷 𝑘%, 𝑚

• e.g., AES
• 𝑀𝐴𝐶(𝑘&, 𝑚)

• e.g., HMAC
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Building AE from existing primitives

1. Encrypt-and-MAC

𝑚,
𝑘 = 𝑘"	||	𝑘#

𝑐 ← 𝑐′	||	𝑡 

Algorithm 𝐴𝐸 𝑘,𝑚 :
    𝑐+ ← 𝐸 𝑘(, 𝑚
    𝑡 ← 𝑀𝐴𝐶 𝑘), 𝑚
    𝑐 ← 𝑐+||𝑡
    Return 𝑐

Algorithm 𝐴𝐷 𝑘, 𝑐 :
    𝑐+||𝑡 ← 𝑐
    𝑚 ← 𝐷 𝑘(, 𝑐′
    If 𝑡 = 𝑀𝐴𝐶 𝑘), 𝑚  Return 𝑚
    Else Return 𝑁𝑈𝐿𝐿

Secure?

No. Vulnerable to chosen-plaintext attacks L

𝑘 = 𝑘"	||	𝑘#

𝑡 is exposed as is. Attacker can observe 𝑡
to check the equality of messages
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Building AE from existing primitives

2. MAC-then-Encrypt
𝑐 ← 𝐸 𝑘", 𝑚||𝑀𝐴𝐶 𝑘#, 𝑚

Algorithm 𝐴𝐸 𝑘,𝑚 : 
    𝑡 ← 𝑀𝐴𝐶 𝑘), 𝑚
    𝑐 ← 𝐸(𝑘(, 𝑚||𝑡)
    Return 𝑐

Algorithm 𝐴𝐷 𝑘, 𝑐 :
    𝑚||𝑡 ← 𝐷 𝑘(, 𝑐
    If 𝑡 = 𝑀𝐴𝐶 𝑘), 𝑚  Return 𝑚
    Else Return 𝑁𝑈𝐿𝐿

No longer vulnerable to chosen-plaintext attacks J
Integrity (unforgeability) is not guaranteed for some 
encryption schemes even if a secure MAC is used L

𝑘 = 𝑘"	||	𝑘#

Secure?

à Attackers can forge messages that are accepted by 𝐴𝐷:
     e.g., 𝐸: 𝑘,𝑚 = 𝐸 𝑘,𝑚 	||	0 = 𝑐′
               𝐷: 𝑘, 𝑐: = 𝐷: 𝑘, 𝑐	||	0 = 𝐷 𝑘, 𝑐

𝑚,
𝑘 = 𝑘"	||	𝑘#



57CSED415 – Spring 2025

Building AE from existing primitives

3. Encrypt-then-MAC
𝑐( ← 𝐸 𝑘", 𝑚 || 𝑡 ← 𝑀𝐴𝐶 𝑘#, 𝑐(

Algorithm 𝐴𝐸 𝑘,𝑚 : 
    𝑐′ ← 𝐸 𝑘(, 𝑚
    𝑡 ← 𝑀𝐴𝐶 𝑘), 𝑐+
    𝑐 ← 𝑐+	||	𝑡
    Return 𝑐

Algorithm 𝐴𝐷 𝑘, 𝑐 :
    𝑐+||	𝑡 ← 𝑐
    𝑚 ← 𝐷 𝑘), 𝑐+
    If 𝑡 = 𝑀𝐴𝐶 𝑘), 𝑐′  Return 𝑚
    Else Return 𝑁𝑈𝐿𝐿

Not vulnerable to chosen-plaintext attacks J
Unforgeability is also guaranteed J

(proof omitted)

𝑘 = 𝑘"	||	𝑘#

Secure?

Can check MAC first before decrypting (efficiency!)

𝑚,
𝑘 = 𝑘"	||	𝑘#
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Cryptography roadmap

Scheme
Goal

Symmetric Key Asymmetric Key

Confidentiality
• One Time Pad (OTP)
• Block ciphers (DES, AES)
• Stream ciphers

• DH secure key exchange
• ElGamal encryption
• RSA encryption

Integrity
&

Authentication

• Message Authentication 
Code (MAC) • Digital signature

CIA at the same time • Authenticated encryption

✅
✅
✅

✅

✅

Additional Tool
• Hash functions✅

✅
✅
✅
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Questions?


