Lec 11: Hash, MAC and AE

CSED415: Computer Security
Spring 2025

Seulbae Kim
POSTECH

Administrivia

rPOSTRPCH

* No in-person class on Thursday, Mar 27

* | will be out of town for another presentation
* A lecture recording will be uploaded

 Lab O3 is out:
* Due: Friday, April 4

* 10-minute proposal presentations:
 When: Thursday, April 3, during regular class time

* Midterm exam:
* When: Tuesday, April 8, during regular class time

CSEDA415 — Spring 2025 2

Overview of Lab 03

Phase 1: uRC4 service (server.py) Phase 2: target
(3) Play game
P '
2048
|'> Secret key (64 bytes) s e, et o 204 ==
(2) Find the a
secret key URC4 (a variant of RC4) 4 2
‘ 2 @ .
Achieve over

Clphertext — @ Given / 3,932,156 points

to get a flag

CSEDA415 — Spring 2025 3

Cryptography roadmap

rPOSTRPCH

Scheme
Goal

Symmetric Key

Asymmetric Key

Confidentiality

One Time Pad (OTP)
Block ciphers (DES, AES)
Stream ciphers

DH secure key exchange
ElGamal encryption
RSA encryption

Integrity
&
Authentication

* Message Authentication
Code (MAC)

* Digital signature

CSEDA415 — Spring 2025

Additional Tool
e Hash functions

Hash Functions

CCCCCCC — Spring 2025 rPOSTEREPLCH

New problem: Data integrity

rPOSTERCH

* Encryption does not guarantee integrity (Lectures 9 & 10)

Cq Co {B}
A 27 : B

“Love you Bob” W “Hate you Bob”

RA

* How do we ensure that Alice’s message was not altered in
transit?
* |[n other words, how do we verify ¢, ==c¢, 7

CSEDA415 — Spring 2025 6

Hash functions

rPOSTERCH

e Hash function H
m_J

* Takes a message m of arbitrary length

e Creates a message digest h of fixed length
* his also called hash, hash value, hash digest, ...

* Key properties H(m)

* Correctness: H(m) should be deterministic
* Hashing m should always produce the same h l

» Efficiency: H(m) should be efficient h=F89CBD46

CSEDA415 — Spring 2025 7

Hash function outputs a fixed-length hash

rPOSTERCH

* For example, MD5 is a “128-bit hash function”

* Produces 16-byte hash digests, e.qg.,
« "a" - 0ccl175b9c0f1b6a831c399e269772661
- "aa" 2> 4124bc0a9335c27f086124ba207a4912
¢« "a"*x2048 > b7ea2d2lad2ef3e28085d30247603e0b
Arbitrary-length input Fixed-length (16-byte) output
* Confirmation:

tmport hashlib
print(hashlib.md5(b"a").hexdigest())
print(hashlib.md5(b"aa").hexdigest())
print(hashlib.md5(b"a" * 2048).hexdigest())

CSEDA415 — Spring 2025 8

Typical usage of hash function

rPOSTERCH

* Scenario: File integrity verification
* Alice and Bob both downloaded a 40-GB movie file from the internet
* They want to verity if the two files are identical
* Nalve way:
1. Alice sends the file to Bob 'G'
g 2. Bob compares Alice’s file with his file D
movie_4k.mp4 (40 GB) > movie_4k.mp4 (40 GB)

- Waste of network bandwidth and
computational powers ®

CSEDA415 — Spring 2025 9

Typical usage of hash function

* Scenario: File integrity verification
 Alice and Bob both downloaded a 40-GB movie file from the internet

* They want to verity if the two files are identical
* Using a hash function:

1. Alice sends H (movie) (16 bytes) G
g 2. Bob compares the hash digests v
movie_4K.mp4 (40 GB) «seswssesessesess x » movie_4k.mp4 (40 GB)
y V

128-bit hash digest » 128-bit hash digest

CSEDA415 — Spring 2025 10

Building hash functions

rPOSTERCH

* Underlying method: Merkle-Damgard construction (1979)

* A method of building a cryptographic hash function H from
collision-resistant one-way compression function €

* Used by many hash functions, including MD5, SHA-1 and SHA-2 families

*m =mby || mby || ... || mb,, (mb;: i-th message block, ||: Concatenation)
mb4 mb, mb,,_4 mb,,
e ——
C C C C
[V —> — S — —_— S — S — H(m)

(IV:Initialization Vector, (7 glways outputs a fixed length output
algorithm-specific)

CSEDA415 — Spring 2025 11

Cryptographic hash functions?

rPOSTERCH

* Cryptographic hash functions are secure hash functions that
satisfy two properties:
* One-wayness (OW)

* Definition: For any given hash value h, it is computationally infeasible
to find m such that H(m) = h

* Collision resistance (CR)

* Definition: It is computationally infeasible to find a pair of plaintexts mq and m,
such that H(my) = H(m,)

CSEDA415 — Spring 2025 12

Computationally infeasible?

rPOSTERCH

* Classification of problems/computations

* Easy: If there exists an algorithm that solves the problem in poly(n)
time, where n is the bit length of the input
* Running time is bound by a polynomial function (e.g., n?) of the input size
* Hard: If, to the best of our knowledge, no polynomial-time algorithm

exists for solving the problem

* e.g., Best known algorithms run in exponential time (e.g., 2™), so as n grows,
the required computations quickly become impractical

* “Computationally infeasible” falls under this category

CSEDA415 — Spring 2025 13

One-wayness (OW)
* Informally:
* Given an output h, it is infeasible to find any m such that H(m) = h

* Formally:

* H is one-way, if for all polynomial-time adversary A
who randomly selects m' from the plaintext domain,

Advy” (A) = Prob[H(m') = h] is negligible
“Advantage”

* Negligible: Attacker’s advantage of winning decreases quickly as input size n
grows. If the problem is hard (computationally infeasible), then the chance of
winning is negligible

CSEDA415 — Spring 2025 14

OW examples

rPOSTERCH

OW: Is Advy"¥ (A) = Prob[H(m') = h] negligible?

* Is H(x) = 0 a one-way hash function?
No. A4 can easily find multiple m's. Prob|[H(m') = 0] =1
* |Is the following summation checksum one-way?

Message Ascii-hex format

CS ED= 43 53 45 44
415 0—+34 31 35 30

Checksum: 77 84 7A 74
No. A can easily find “CSED4150” (and other m’s) given 77847A74

CSEDA415 — Spring 2025 15

OW examples

rPOSTERCH

OW: Is Advy"¥ (A) = Prob[H(m') = h] negligible?

* If H and G are length-preserving hash functions that are OW,
is F(x) = H(x) @ G(x) one-way? (©: XOR)

No. If H = G, then F(x) = 0. Constant function is not OW

* If H(x) = x mod p where p is a large, pre-selected prime
number, is it one-way?

No. A can easily find multiple multiple m's that satisfy m’ mod p = h

CSEDA415 — Spring 2025 16

Collision resistance (CR)
* Collision: Two different inputs resulting in the same output
*my * mo and H(ml) — H(mz)

e Can a hash function have no collision?

* No. If the input domain is larger than 2" for a n-bit hash function,
there must exist collisions (by the pigeonhole principle)

* Collision resistance is not about having no collisions!
- It is about making it infeasible to find collisions

CSEDA415 — Spring 2025 17

Collision resistance (CR)

rPOSTERCH

* Informally:

* [t is computationally infeasible to find a pair of plaintexts m; and m,
such that H(my) = H(m,)

* Formally:
* H is collision-resistant, if for all polynomial time adversary A,

Advy (A) = Prob[H(m,) = H(m,)] is negligible where m; # m,

“Advantage”

CSEDA415 — Spring 2025 18

CR examples

rPOSTERCH

CR: Is Advy (A) = Prob[H(m,) = H(m,)] negligible where m; # m,"?

* |Is H(x) = 0 collision-resistant?

No. Every pair of < my, m, > is a collision.

 If H(x) is sum of bits in m mod 2 (i.e., parity bit), is H CR?

No. A counter-example: my = 01, m, = 10

CSEDA415 — Spring 2025 19

CR examples

rPOSTERCH

CR: Is Advy (A) = Prob[H(m,) = H(m,)] negligible where m; # m,"?

* Let H: {0, 1}%°° - {0, 1}'%8 be defined by

(H is a function that maps a 256-bit input to a 128-bit output)
H(x) = H(x,||xg) = AES(x) D AES(xg)

(||: Concatenation)

* Q) Is H collision-resistant?

No. A counter-example: my = 1010 0001, m, = 0001 1010

CSEDA415 — Spring 2025 20

CR examples

rPOSTERCH

CR: Is Advy (A) = Prob[H(m,) = H(m,)] negligible where m; # m,"?

* |s CRC-32 (Cyclic Redundancy Check) collision-resistant?

* CRC-32 is widely used for calculating checksum for error detection.
It hashes input byte sequence to a 32-bit value

No. Because of its small output size, the birthday paradox implies that
we can find collisions with about a 50% chance in only 65536 trials!

CSEDA415 — Spring 2025 21

CR examples

rPOSTERCH

CR: Is Advy (A) = Prob[H(m,) = H(m,)] negligible where m; # m,"?

* Demo: Finding hash collision of CRC-32
* Hashing 123,565 English words found online:

import os, zlib

filename = "nordpass-word-list.txt"

url = "https://gist.githubusercontent.com/atoponce/4c4692940522947b8611d33d7cf3225d/raw/cd078528f2c2e5dbb8c750f7b2d1a9508c094840"
os.system(f"wget {url}/{filename}")

with open(filename, "r", encoding="utf-8") as f:
lines = f.readlines()

crc_dict = dict()
for line in 1lines:
word = line.split("\t")[-1].strip().encode("utf-8")
c = zlib.crc32(word)
if ¢ not in crc_dict:
crc_dict[c] = [word]
else:
crc_dict[c].append(word)
print("collision!", crc_dict[c])

CSEDA415 — Spring 2025 22

A generic attack for finding collisions

rPOSTERCH

* Birthday problem:

* |f you choose a group of N random people, what is the probability
that at least one pair of individuals have the same birthday?

* Birthday pardox:
e [f N = 23, the probability is 50%. Only 23 people!
« Event E: Everyone has different b-day 2 365X364X ---X (365 — 22) = 3,:Py3

* Possible outcomes: Each person has 365 choices = 36523

* Prob. that no one shares the birthday: P(E) = % ~ 0.492

» Therefore, prob. that at least two people share the b-day: 1 — P(E) = 50%

CSEDA415 — Spring 2025 23

A generic attack for finding collisions

rPOSTERCH

* Birthday attack

* Similarly, the probability of detecting a hash collision via brute-forcing
IS much higher than we expect
* Approximation:

* When there are 2™ possible data, if we have V2™ data,
the probability to find a collision is > 50%

* In other words, one can find a collision for 50% chance after V2™ trials

* Birthday collision: 365 total days = n = 9 bits to represent 365
>29=226> approximately 23 trials for 50% chance

CSEDA415 — Spring 2025 24

A generic attack for finding collisions

rPOSTERCH

» Collision-resistance of a n-bit hash function is bounded by v 2"

* Cryptanalysis of hash functions

Trials needed by

Function n birthday attack Existing attacks
MD4 128 264 <sec
MD5 128 264 1 min
SHA-1 160 280 269 trials (2005)
SHA-1 160 280 2031 trials (2017)
SHA-256 256 LA

Attacks requiring less trials than B-day attack are considered feasible attacks

CSEDA415 — Spring 2025 25

MD5 hash

rPOSTERCH

* MD5

e An old standard hash function without collision-resistance
* Generates 128-bit hash digests

e Severe weaknesses have been discovered

* e.g., Chosen-prefix collisions attacks (Marc Stevens, et al))
e Start with two arbitrary plaintexts m; and m,

* One can compute suffixes s; and s, such that md5(m4||s1) = md5(m,||s;)
in only 250 trials

* Using this approach, a pair of different files (e.g., jpeg) with the same MD5
hash value can be computed

CSEDA415 — Spring 2025 26

Collision in practice — MD5b is completely broken

rPOSTERCH

* Download ship.jpg and plane.jpg from
https://natmchugh.blogspot.com/2015/02/create-your-own-
mdb5-collisions.html|

import hashlib

f1
f2

open("ship.jpg", "rb").read()
open("plane.jpg", "rb").read()

print(hashlib.md5(f1).hexdigest())
print(hashlib.md5(f2).hexdigest())

Both files are hashed to 253dd04e87492e4fc3471de5e776bc3d

CSEDA415 — Spring 2025 27

https://natmchugh.blogspot.com/2015/02/create-your-own-md5-collisions.html
https://natmchugh.blogspot.com/2015/02/create-your-own-md5-collisions.html
https://natmchugh.blogspot.com/2015/02/create-your-own-md5-collisions.html
https://natmchugh.blogspot.com/2015/02/create-your-own-md5-collisions.html

CR vs OW

rPOSTERCH

* Does collision-resistance imply one-wayness?

e [t does not
e.g.,, H(x) = x is CR, but not OW

* Does one-wayness imply collision-resistance?

* |t does not
e.g., H(x) is a secure hash function, which is one-way.
We can build G(x) = H(xgxq ... xn,—») (ignores the last bit of x)
- G(x) is still OW because it is hard to find x from G (x) if n is large
- However, G(x) is not CR. G(xgxq ... X;—20) = G(xgx1 ... Xy_>1)

*Notation: x = xpx1x5 ... X5,—1 (x;: i-th bit of x)
CSEDA415 — Spring 2025 28

Using hash functions for integrity

rPOSTERCH

e Scenario

* Microsoft publishes a new version of vscode
* Alice downloads the installer

* How does she verify that no one has tampered with it in transit?
* In other words, how can she verify the installer’s integrity?

CSEDA415 — Spring 2025 29

Using hash functions for integrity

* e.g., vscode download site

Download Visual Studio Code

Free and built on open source. Integrated Git, debugging and extensions.

4 .deb 4 .rpm 4 Mac
Windows 10, 11 Debian, Ubuntu Red Hat, Fedora, SUSE macOS 10.15+
User Installer Arm64 .deb Wile] Intel chip | Apple silicon
System Installer .rpm
zip tar.gz (@ RN Intel chip | Apple silicon

Snap
cLi

cul x64

CSEDA415 — Spring 2025

rPOSTERCH

30

Using hash functions for integrity

* e.g., vscode download site

Windows User Installer (x64)
Windows System Installer (x64)
Windows .zip (x64)
Windows CLI (x64)
Windows User Installer (Arm64)
Windows .zip (Arm64)
Windows System Installer (Arm64)
Windows CLI (Arm64)
Linux .deb (x64)

Linux .rpm (x64)

Linux .tar.gz (x64)

Linux CLI (x64)

CSEDA415 — Spring 2025

SHA-256 hashes

7bda1c7dfc670489155db2f8fc1f48c209b92fb6145a320d677dccfObce921b6
c49f51562a99e19412d968a81ad653960c4861e95f7cd04e49e15c42e139a%e
564d545cc1099bcb48c7eb5b5efb292d7dea2e02a37d8bd84a907e171f3092ce
€306eb45d0ef485885308090c66f1a0328aece3ccdbdcc1554a7b3ad54f639e7
c91bd092b71c3d948bb8f32fc5f83e454f4ec90eee7b0e9cf58decf880fea54e
a63c75550322fca979e672d09cc46385d02d1e7a9d07f12b2b078af4f4005478
63178497481ddf816396566904€99b4b3a817637f1c9170255fa294babed9f79
0d8ded98088669219b52784f48c0b4f2364dbefd104c87dcfbf048827880fe8a
3340b2649e486adfde2452418599acb64c1dc3998087d715d244f10302a89b94
841f72255270b647c657f6a20728d271cf08f94a07b7625fc91b548545efac8b
c2e97cdc63ff1bcbfbb10c227b5398623d21f21e487108fa1d740dabe7d37985

1cb4ee01e6941b369c69253f12ff0eed15071221c7f16858a49694cd981bfbéc

rPOSTERCH

31

Using hash functions for integrity

rPOSTERCH

e Method

* Microsoft hashes the installer binary with SHA-256 and publishes
the hash digests on its website

* Alice hashes the installer binary she downloaded with SHA-256 and
checks if the hash matches the hash on the website
* Security

* |f Alice downloads a malicious program, the hash would not match

* An attacker cannot create a malicious program with the same hash as
the original installer (SHA-256 is collision-resistant)

CSEDA415 — Spring 2025 32

Using hash functions for integrity
* Another scenario

 Alice and Bob want to communicate over an insecure channel and
verify integrity of their messages

* Mallory can tamper with the messages

CSEDA415 — Spring 2025 33

Using hash functions for integrity
* Method

* Alice sends her message with its hash digest over the channel
* Bob receives the message and computes a hash of the message
* Bob verifies that the hash he computed matches the hash sent by

Alice
H(m) matches.
Not tampered!
g m |l H(m) ml H(m)>
a>

m = “Love you, Bob”

H(m) = 9dd06d0ad4af07a431c9a20f1510d4cT E

CSEDA415 — Spring 2025 34

Using hash functions for integrity
* Method

* Alice sends her message with its hash digest over the channel
* Bob receives the message and computes a hash of the message
* Bob verifies that the hash he computed matches the hash sent by

Alice ,
H(m'") matches.
Not tampered!
(B

g m |l H(m) m’IIH(m’)
=
o = > v

H(m) = 9dd06d0ad4af07a431c9a20f1510d4cf E Problem: Mallory can modify BOTH

m’ = “Hate you, Bob”
H(m") = 8fdc1ad05c30b8311f687b04c61e8lef

CSEDA415 — Spring 2025 35

Do hash functions provide integrity?

rPOSTERCH

* Not necessarily

* Microsoft website = Mallory can compromise Microsoft’'s web servers
and modify H(vscode)

« Communication = Mallory can modify m to m’ and H(m) to H(m')

* Main issue: Hash functions are keyless and deterministic

* No secret key is used as input for hash functions, so any attacker can
compute the hash of any value

Then, how can we utilize hash to design schemes that provide integrity?

CSEDA415 — Spring 2025 36

Cryptography roadmap

rPOSTERCH

Scheme
Goal

Symmetric Key

Asymmetric Key

Confidentiality

One Time Pad (OTP)
Block ciphers (DES, AES)
Stream ciphers

DH secure key exchange
ElGamal encryption
RSA encryption

Integrity
&
Authentication

* Message Authentication
Code (MAC)

* Digital signature

CSEDA415 — Spring 2025

Additional Tool
Hash functions

37

Message Authentication Code
(MAC)

CCCCCCC — Spring 2025 rPOSTEREPLCH

Goal: Providing integrity

rPOSTERCH

* Reminder: We are in the symmetric-key setting

* Alice and Bob share a secret key
* Attacker does not know the key

* |dea: Attach some piece of information to verify that
someone with the key is the sender of a message

CSEDA415 — Spring 2025 39

Message Authentication Code (MAC)

rPOSTERCH

* Designed to provide both integrity and authenticity

e Setting
 Alice sends message m and tag t = MAC(k,m) where k: secret key
* Bob recomputes MAC (k, m) and verifies if the result matches t
* [f the MACs match, Bob is confident that m has not been altered

MAC k

Verif
. T LTS)
a>
k t

CSEDA415 — Spring 2025 40

Hash function vs MAC

rPOSTERCH

* Hash: Keyless

=

* MAC: Keyed

m —» MAC(k,m) > t

|

k

CSEDA415 — Spring 2025 41

Evaluating the security of MAC

rPOSTERCH

* “Unforgeability”: MAC is unforgeable under chosen msg m if

* A polynomial time adversary can see some number of < m,t > pairs

* Without knowing the key k,
it is infeasible to find a message m and its MAC tag t
such thatt = MAC(k, m)

CSEDA415 — Spring 2025 42

Evaluating the security of MAC

rPOSTERCH

 Example: Is block-cipher-based MAC secure?
* £ is a n-bit block cipher using key k

(First n bits of m)

m0m1 nnn mn_l mn nnu mZn_l

Is this MAC unforgeable?
k ™ E k P E k P E (0000 ...011111)

1. Adversary selects plaintext 0™||1" and
obtains t = MAC (k,0"||1™)

2. Adversary found m = 1"*||0" and its tag t

® such that t = MAC (k,1™||0™)

MAC

| - Not unforgeable (i.e., no integrity)

CSEDA415 — Spring 2025 43

Constructing MAC using hash functions

rPOSTERCH

* Secret prefix MAC:
* MAC,, = H(k||m)
* Secret suffix MAC:
* MAC,; = H(m||k)
* Nested MAC.:
* NMAC = H(ky || H(ky||m))

 Hash-based MAC:
* HMAC = H(k' @ opad || H(k' @ ipad || m))

CSEDA415 — Spring 2025 44

Constructing MAC using hash functions

rPOSTERCH

* Secret prefix MAC: MACg, = H(k||m)
» Recall: Merkel-Damgard transform

k||mb4 mb, mb,,_1 mb,,
L Ly Ly b
C C C C
[V —> > — — — —]—](k”m)

Expectation: Mallory cannot compute H(k||m) from m, as he does not know k

CSEDA415 — Spring 2025 45

Constructing MAC using hash functions

rPOSTERCH

* Secret prefix MAC: MACg, = H(k||m)
» Recall: Merkel-Damgard transform

k||mb4 mb- mb,,_1 mb,, @ (Extra data)
C C C C C
IV —> > — —_— — —]—](k”m)—» —»]—](k”m’)

Reality: Vulnerable to length extension attack

« Given m and H(k||m), Mallory can append a to m to obtain m' = m||a.

* Mallory can compute its MAC tag H(k||m") = H(k||m||a) from the H(k||m).

* Mallory successfully obtains < m,t > =< ml|a, H(k||m||a) > without knowing k

CSEDA415 — Spring 2025 46

Constructing MAC using hash functions

» Secret suffix construction: MAC,; = H(m||k)

e There is no known attack for secret suffix construction

* However, its unforgeability has not been proven

mb1

IV —

L~

C

mbz

.

CSEDA415 — Spring 2025

T~
C

>

#

mb,,

.

k||pad

T~
C

L.

ﬁ

T~
C

>

— H(k||m)

rPOSTERCH

47

Constructing MAC using hash functions

rPOSTERCH

» Nested MAC: H(k, || H(k,||m))

* Prevents length extension attacks by hashing twice

* |tis proven that if two keys (k; and k) are different, NMAC is
unforgeable
* Proof omitted

 Practical issues of NMAC

* Need two different keys (weaker security)
* Two keys need to be the same length as hash digest (constraint)

CSEDA415 — Spring 2025 48

Constructing MAC using hash functions

rPOSTERCH

» Hash-based MAC: HMAC = H(k' @ opad || H(k' @ ipad || m))
* Improvement over NMAC

* k': n-bit version of k where n is the length of hash digest

* If k is smaller than n bits, k' = k||0™ ¥l i.e., pad k with O’s to make it n bits
« Otherwise, k' = H(k), i.e., hash k to make it n bits

« Two different keys can be derived from k'
* Outer pad (opad): @x5c repeated until the length becomes n bits
* Inner pad (ipad): @x36 repeated until the length becomes n bits

* Two rounds of hashing with two keys

CSEDA415 — Spring 2025 49

Evaluating the security of HMAC

rPOSTERCH

* Hash-based MAC (HMACQ):
« H(k' @ opad || H(k' @ ipad || m))

* HMAC is unforgeable under chosen message attack

* A polynomial attacker cannot create m and valid t = HMAC (k, m) without
knowing the secret key k (proof omitted)

* HMAC is one of the most widely standardized and used
cryptographic constructs

CSEDA415 — Spring 2025 50

Cryptography roadmap

rPOSTERCH

hem : :
Scheme Symmetric Key Asymmetric Key
Goal
One Time Pad (OTP) DH secure key exchange
Confidentiality Block ciphers (DES, AES) ElGamal encryption
Stream ciphers RSA encryption
Integrity Message Authentication o
& Code (MAC) * Digital signature
Authentication
Can we achieve both Additional Tool

at the same time? Hash functions

CSEDA415 — Spring 2025 51

Authenticated Encryption

CCCCCCC — Spring 2025 rPOSTEREPLCH

Confidentiality and integrity/authenticity goals

rPOSTERCH

* Encryption schemes provide confidentiality, but not integrity
* MACs provide integrity/authenticity, but not confidentiality
- Can we achieve both at the same time?

CSEDA415 — Spring 2025 53

Authenticated encryption (AE)
* Definition
* A scheme that simultaneously guarantees confidentiality and integrity
of a message

* Existing building blocks for AE:
 E(k{,m) and D(k{,m)
* e.g., AES
* MAC(k,,m)
* e.g., HMAC

CSEDA415 — Spring 2025 54

Building AE from existing primitives

rPOSTECH
1. Encrypt-and-MAC Secure?
A)
g 7
Algorithm AE (k, m): Algorithm AD(k, c¢): a>
m, ¢ « E(ky,m) c'||t « ¢ k =kl k>
ke =y || ka t « MAC(k,, m) m < D(kq, ")
cec'||t If (t = MAC (k,,m)) Return m
Return ¢ Else Return NULL

No. Vulnerable to chosen-plaintext attacks ®

t is exposed as is. Attacker can observe t
to check the equality of messages

CSEDA415 — Spring 2025 55

Building AE from existing primitives

rPOSTERCH

2. MAC-then-Encrypt Secure?
g ¢ « E(ky, m||MAC (k,,m)) ‘G,
>
_/
Algorithm AE (k, m): Algorithm AD(k, ¢): a»
m, t « MAC (k,, m) m||t « D(kq,c) k =kl ks
k =kl ks, ¢ « E(ky,m||t) If (t = MAC(k,,m)) Return m
Return ¢ Else Return NULL

No longer vulnerable to chosen-plaintext attacks ©

Integrity (unforgeability) is not guaranteed for some
encryption schemes even if a secure MAC is used ®

- Attackers can forge messages that are accepted by AD:
eg., E'(kkm)=E(k,m)||0=c
D'(k,c'") =D'(k,c||0) =D(k,c)

CSEDA415 — Spring 2025 56

Building AE from existing primitives

rosTecCH
3. Encrypt-then-MAC Secure?
g (¢' « E(ky,m))||(t « MAC (ky, ")) .G.
>
_/
Algorithm AE (k, m): Algorithm AD(k, ¢): a>
m, ¢' « E(ky, m) c'l|t<c k=kill ks
ke =y || ka t « MAC(ky,c") m <« D(ky,c")
cec'||t If (t = MAC (ky, ")) Return m
Return ¢ Else Return NULL

Not vulnerable to chosen-plaintext attacks ©

Unforgeability is also guaranteed ©
(proof omitted)

Can check MAC first before decrypting (efficiency!)

CSEDA415 — Spring 2025 57

Cryptography roadmap

rPOSTERCH

Scheme
Goal

Symmetric Key

Asymmetric Key

Confidentiality

One Time Pad (OTP)
Block ciphers (DES, AES)
Stream ciphers

DH secure key exchange
ElGamal encryption
RSA encryption

Integrity
&
Authentication

Message Authentication
Code (MAC)

* Digital signature

CIA at the same time

Authenticated encryption

CSEDA415 — Spring 2025

Additional Tool
Hash functions

58

Questions?

CCCCCCC — Spring 2025 rPOSTEREPLCH

