
Seulbae Kim

CSED415: Computer Security
Spring 2025

Lec 13: Secure Communication

2CSED415 – Spring 2025

Administrivia

• This Thursday: 10-minute proposal presentations
• Submission #1: A two-page proposal document, which must include:

• Definition: What problem are you trying to solve?
• Motivation: Why is this problem important?
• Methodology: How do you plan to solve the problem?
• Evaluation: How will you evaluate your solution’s effectiveness?
• Plan: What is your tentative timeline?

• Submission #2: Slides for your in-class presentation
• It is recommended to explicitly include the items above in your slides

• Submission deadline: April 3 (Thu) by Noon

3CSED415 – Spring 2025

Administrivia

• Midterm exam:
• Time: Next Tuesday (April 8), 2:00-3:15 PM (75 minutes)
• Location: Classroom (Science Building II, Room #106)
• Format: Closed book, closed notes, closed laptop/phone exam

• Allowed: One-page (US letter- or A4-sized) double-sided handwritten cheat
sheet

• Structure: 7 main questions (each may have sub-questions)
• Scope: Lectures 1 to 13, Labs 01 and 02

4CSED415 – Spring 2025

Study tips for midterm exam

• Review lecture slides and labs
• Retry labs that were left incomplete

• Study in groups (highly recommended)
• Ask what-if questions to each other
• Try to answer together

• Focus on understanding concepts instead of memorizing
• Utilize cheat sheet for referring to facts and formulas
• Understand WHY something works or doesn’t work
• Think about potential attacks and defenses (practice threat modeling)

5CSED415 – Spring 2025

Recap

• Cryptography:
• A mechanism for enabling secure communication over insecure,

untrusted channels

• Many network-based systems utilize cryptographic schemes
for secure communication
• To guarantee confidentiality, integrity, and authentication

• Today’s topic:
• How various internet services employ cryptographic primitives to

ensure a secure connection in practice

CSED415 – Spring 2025

Secure Emails

7CSED415 – Spring 2025

Brief history of email

• Physical transportation
• Early “remote” messaging was done via physical delivery

• Electrical telegraphs & Morse code (1800s)
• Introduced near-instant long-distance text communication over wires

8CSED415 – Spring 2025

Brief history of email

• ARPANET (Predecessor of modern internet)
• Developed by the U.S. Department of Defense (1971)
• The first email was sent via SNDMSG program on ARPANET
• Introduced the @ symbol to separate the recipient’s username from

the host computer’s address

9CSED415 – Spring 2025

Brief history of email

• SMTP (Simple Mail Transfer Protocol, 1980)
• A standardized protocol for email transmission
• Supports sending simple text messages

Img: RFC 821. Simple Mail Transfer Protocol

10CSED415 – Spring 2025

Brief history of email

• MIME (Multipurpose Internet Mail Extensions, 1991)
• Extends email format to handle multimedia content (images, audio, …)
• Defines extra headers, such as:

• MIME-Version
• Content-Type

• Text/plain, image/jpeg, audio/mp3, …
• Content-Disposition

• Inline, attachment
• Content-Transfer-Encoding

• base64, ascii, …

MIME-Version: 1.0
Content-Type: multipart/mixed;
boundary=frontier
This is a message with multiple parts in MIME format. --frontier

Content-Type: text/plain
This is the body of the message. --frontier

Content-Type: application/octet-stream
Content-Transfer-Encoding: base64
PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA+
VGhpcyBpcyB0aGUg Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9
ib2R5Pgo8L2h0bWw+Cg==

--frontier--

Key observation: None of these early protocols inherently provided security

11CSED415 – Spring 2025

S/MIME: Secure MIME

• S/MIME: A set of MIME content types specifically designed to
support encryption and/or digital signatures
• e.g., Content-Type: application/pkcs7-mime

• Core functionality:
• Enveloped data: Encrypts the message for confidentiality
• Signed data: Digitally signs the message for integrity and authenticity
• Signed and enveloped data: Combines both encryption and signing

(PKCS: public-key cryptography standards)

email
content

email
content

signed
data

email
content

enveloped
data

12CSED415 – Spring 2025

S/MIME workflow

𝑘!" 𝑘#" 𝑘#$ 𝑘!$ 𝑘#$ 𝑘#"

𝑚

𝑅𝑆𝐴 𝑘!", ℎ

𝑘!"

𝜎

𝑚
𝜎

𝑆𝐻𝐴256 𝑚

ℎ

Sign

𝐴𝐸𝑆(𝑘%, 𝑚||𝜎)

𝑘%

𝑅𝑆𝐴 𝑘#$, 𝑘%

𝑐

Secure digital signing
(Recall Lec 12: Hash-then-sign)

𝑒𝑘%

𝑘#$: public key of Bob

(one-time key) Attach 𝑒𝑘%||𝑐
to an email

Enveloping
(Encryption)

(Email body)

(Signature)

(Secret key
of Alice)

(Encrypted
one-time key)

(Encrypted
𝑚||𝜎)

13CSED415 – Spring 2025

S/MIME email example
MIME-Version: 1.0
Message-Id: <9358910051929015@postech.ac.kr>
Date: Tue, 02 Apr 2024 00:16:31 +0900 (Korea Standard Time)
From: alice@postech.ac.kr
To: bob@postech.ac.kr
Subject: email example
Content-Type: application/pkcs7-mime; name=smime.p7m; smime-type=enveloped-data
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7m

MIIBHgYJKoZIhvcNAQcDoIIBDzCCAQsCAQAxgcAwgb0CAQAwJjASMRAwDgYDVQQDEwdDYXJ
sUlNBAhBGNGvHgABWvBHTbi7NXXHQMA0GCSqGSIb3DQEBAQUABIGAC3EN5nGIiJi2lsGPcP
2iJ97a4e8kbKQz36zg6...bGgzoyEd8Ch4H/dd9gdzTd+taTEgS0ipdSJuNnkVY4/M652jK
LFf02hosdR8wQwYJKoZIhvcNAQcBMBQGCCqGSIb3DQMHBAgtaMXpRwZRNYAgDsiSf8Z9P43
LrY4OxUk660cu1lXeCSFOSOpOJ7FuVyU=

base64-encoded 𝑒𝑘%||𝑐 attachment

CSED415 – Spring 2025

Secure Socket Layer (SSL) /
Transport Layer Security (TLS)

15CSED415 – Spring 2025

Background: Computer networks

• Remote communication before internet: Circuit switching
• Legacy phone network
• Establish a single route through

a sequence of hardware devices
for two nodes to communicate
• Route == connected wire

• Data (electric current) is sent
over the route
• The route is maintained until the

communication ends Telephone switchboard

16CSED415 – Spring 2025

• Internet communication: Packet switching
• Data is split into smaller packets
• Packets are transported

independently through the network
• Network switches determine the best

route for each packet (routing protocol)
• Consequently, different packets can travel

different paths to reach the same destination

Background: Computer networks

Packets sent over routers

packet 1

packet 1

packet 1
packet 2

packet 2

17CSED415 – Spring 2025

Background: Computer networks

• Layers in networking
• Higher layers use the services of lower layers via encapsulation

Application layer

Transport layer

Internet layer

Ethernet layer

TCP/IP network model

Data

DataTCP*
header

DataTCP*
header

IP
header

DataTCP*
header

IP
header

Frame
header

Frame
footer

Data encapsulation
*or UDP

18CSED415 – Spring 2025

Background: Computer networks

• Logical and physical data flow

Application layer Application layer
Logical: “Send a message to Bob”

19CSED415 – Spring 2025

Background: Computer networks

• Logical and physical data flow

Application layer

Transport layer

Internet layer

Ethernet layer

Application layer

Transport layer

Internet layer

Ethernet layer

Internet layer

Ethernet layer

Internet layer

Ethernet layer

LAN
cable

Optical
fiber Wi-Fi

Logical: “Send a message to Bob”

MAC addr

IP addr

Port num

Process ID

MAC addr

IP addr

Port num

Process ID

Physical medium

20CSED415 – Spring 2025

Security?

Application layer

Transport layer

Internet layer

Ethernet layer

Application layer

Transport layer

Internet layer

Ethernet layer

Internet layer

Ethernet layer

Internet layer

Ethernet layer

LAN
cable

Optical
fiber Wi-Fi

MAC addr

IP addr

Port num

Process ID

MAC addr

IP addr

Port num

Process ID

Confidentiality, integrity, authenticity?

21CSED415 – Spring 2025

Background: Transport layer protocols

• TCP and UDP
• TCP (Transmission Control Protocol): For reliable data transfer

• Client and server establish connection via the 3-way handshake
• Client SYN à Server SYN-ACK à Client ACK

• UDP (User Datagram Protocol): For faster data transfer
• Connection-less
• Does not provide reliability nor message ordering

22CSED415 – Spring 2025

Background: TCP handshake

• 3-way handshake
1. Client selects an initial sequence number x

and sends a SYN (synchronize) packet
to the server

2. Server selects an initial sequence number y
and responds with a SYN+ACK (acknowledge)
packet

3. Client responds with an ACK packet
4. Once the sequence numbers are synchronized,

connection is established

client server

SYN (seq: x)

SYN (seq: y) + ACK (x+1)

ACK (seq: y+1)
Established

Established

23CSED415 – Spring 2025

SSL/TLS protocol

• Secure Sockets Layers protocol (SSL)
• Outdated and replaced by TLS. “SSL” refers to TLS now

• Transport Layer Security protocol (TLS)
• Built on top of TCP
• Goal: End-to-end encryption and integrity, even if

every intermediate node/connection is untrusted

Application layer

Transport layer

Internet layer

Ethernet layer

TCP/IP network model

TLS

DataTCP
header

Transport layer
encapsulation

TCP
header

Transport layer
encapsulation with TLS

Encrypted
dataTLS

24CSED415 – Spring 2025

TLS handshake

• Step 1: Exchange hellos
• Assumption: A TCP connection has already been

established via 3-way handshake
• Client sends ClientHello

• A 256-bit random number 𝑅3
• A list of supported cryptographic algorithms

• Server sends ServerHello
• A 256-bit random number 𝑅4
• The algorithm to use (chosen from the client’s list)

• 𝑅! and 𝑅" prevent replay attacks

client server

ClientHello: 𝑅&

ServerHello: 𝑅'

25CSED415 – Spring 2025

TLS handshake

• Step 2: Server sends its certificate
• Recall: Certificate includes the server’s

identity and public key, signed by a trusted CA
• Client verifies the server’s certificate

• Using the CA’s public key
• The client now knows the server’s public key

• Server’s public key: 𝑘54

• The client is not yet sure if it is talking to the
legitimate server (not an impersonator)
• Since certificates are public, anyone can present

anyone else’s certificate

client server

Certificate

ClientHello: 𝑅&

ServerHello: 𝑅'

26CSED415 – Spring 2025

TLS handshake

• Step 3: Share premaster secret
• The client randomly generates a

premaster secret (𝑃𝑆)
• The client encrypts 𝑃𝑆 with the server’s

public key (𝑘#$) and sends it to the server
• The server decrypts 𝑃𝑆 using its secret key (𝑘"$)

• No one else can decrypt 𝐸 𝑘54, 𝑃𝑆
• Therefore, if the server presents a valid 𝑃𝑆 later,

the client can be assured that the server is not an
impersonator

client server

Certificate

𝐸(𝑘#', 𝑃𝑆)

ClientHello: 𝑅&

ServerHello: 𝑅'

27CSED415 – Spring 2025

TLS handshake

• Step 4: Derive symmetric session keys
• Both sides derive session keys from

the same 𝑅% , 𝑅$, and 𝑃𝑆
• Usually by seeding a PRNG with 𝑅3, 𝑅4, and 𝑃𝑆
• Any difference would result in different session keys

• Four symmetric session keys are derived
• 𝐶3: Encryption key for client à server msgs
• 𝐶4: Encryption key for server à client msgs
• 𝐼3: For generating MAC of client à server msgs
• 𝐼4: For generating MAC of server à client msgs

client server

Certificate

𝐸(𝑘#', 𝑃𝑆)

ClientHello: 𝑅&

ServerHello: 𝑅'

Key derivation

Secure connection
established

28CSED415 – Spring 2025

TLS message exchange

• Messages can now be sent securely
• Utilize Authenticated Encryption (AE)

• With the derived session keys, generate MAC of 𝑚,
append the MAC to 𝑚, and then encrypt
• Note:

• Even though Encrypt-then-MAC is considered safer
(recall: Lecture 11), TLS uses MAC-then-Encrypt for
backward compatibility with legacy applications

client server

Key derivation

𝐸 𝐶& , 𝑚	||	𝑀𝐴𝐶 𝐼& , 𝑚

𝐸 𝐶', 𝑚	||	𝑀
𝐴𝐶 𝐼', 𝑚

Secure connection
established

29CSED415 – Spring 2025

Security of TLS

• Authenticity: Can client make sure that
it is talking to the legitimate server?
• The server sends its certificate, so the client

can verify it and obtain server’s public key 𝑘#$

• The server proves that it owns the corresponding
secret key 𝑘"$ by decrypting the encrypted 𝑃𝑆
• An impersonator cannot derive the same set of

session keys as he/she does not own the
secret key to decrypt the encrypted 𝑃𝑆

client server

Key derivation

𝐸 𝐶& , 𝑚	||	𝑀𝐴𝐶 𝐼& , 𝑚

𝐸 𝐶', 𝑚	||	𝑀
𝐴𝐶 𝐼', 𝑚

Secure connection
established

Certificate

𝐸(𝑘#', 𝑃𝑆)

ClientHello: 𝑅&

ServerHello: 𝑅'

30CSED415 – Spring 2025

Security of TLS

• Confidentiality and Integrity: How can
both parties ensure that attackers cannot
read or tamper with their messages?
• The attacker does not know 𝑃𝑆

• Cannot decrypt 𝐸 𝑘54, 𝑃𝑆 without 𝑘;4

• The session keys are derived from 𝑃𝑆
• 𝐶3, 𝐶4, 𝐼3, and 𝐼4

• Authenticated encryption using the session keys
provide confidentiality and integrity

client server

Key derivation

𝐸 𝐶& , 𝑚	||	𝑀𝐴𝐶 𝐼& , 𝑚

𝐸 𝐶', 𝑚	||	𝑀
𝐴𝐶 𝐼', 𝑚

Secure connection
established

Certificate

𝐸(𝑘#', 𝑃𝑆)

ClientHello: 𝑅&

ServerHello: 𝑅'

31CSED415 – Spring 2025

Security of TLS

• Robustness to replay attacks:
How can both parties ensure that
an attacker is not replaying old messages
from a past TLS connection?
• Every TLS handshake uses a different random

values (𝑅% and 𝑅$) that are exchanged during
via ClientHello and ServerHello messages
• The session keys are derived from 𝑅% and 𝑅$

• These keys are different for every TLS connection

client server

Key derivation

𝐸 𝐶& , 𝑚	||	𝑀𝐴𝐶 𝐼& , 𝑚

𝐸 𝐶', 𝑚	||	𝑀
𝐴𝐶 𝐼', 𝑚

Secure connection
established

Certificate

𝐸(𝑘#', 𝑃𝑆)

ClientHello: 𝑅&

ServerHello: 𝑅'

32CSED415 – Spring 2025

What TLS does and doesn’t

• TLS guarantees end-to-end security
• Even if every entity between the client and the server is malicious,

TLS provides a secure communication channel
• Examples

• A local attacker captures all Wi-Fi communications
• The attacker cannot decipher or manipulate TLS messages w/o the session keys

• A MitM tries to inject TCP packets
• These packets will be rejected (cannot generate valid MACs w/o session keys)

• Caveat: TLS does not guarantee end-to-end security if one end is
malicious (e.g., communicating with a malicious server)
• TLS only protects data in transit

33CSED415 – Spring 2025

What TLS does and doesn’t

• TLS does not guarantee anonymity
• Anonymity: Hiding the client’s and server’s identities from attackers
• Attackers can still figure out who is communicating with TLS

• Server’s certificate, containing server’s identity, is sent during the handshake
• Attacker can still observe IP addresses and ports from the headers of

underlying IP and TCP layers

Encapsulation after TLS

Frame
header

Frame
footer

Encrypted
data

Required for routing (i.e., locating src/destination), so cannot be encrypted

TCP
header

IP
header

34CSED415 – Spring 2025

What TLS does and doesn’t

• TLS does not guarantee availability
• Availability: Keeping the connection open in the face of attackers
• Attackers can block or drop TLS packets to stop TLS connections
• In other words, TLS connections can still be censored

• South Korean government blocks access to porn and gambling websites

CSED415 – Spring 2025

TLS in Action: HTTPS

36CSED415 – Spring 2025

HTTPS: HTTP over TLS

• Combination of HTTP (Hypertext Transfer Protocol) and TLS
• TLS applied specifically for securing the communication between

a web browser and a web server

• All modern browsers support HTTPS protocol
• If not, avoid at all costs!

• URLs of the servers providing HTTPS connection start with
https://

37CSED415 – Spring 2025

HTTPS: HTTP over TLS

• Connection
• HTTP connection uses port 80
• HTTPS connection uses port 443, which invokes TLS protocol

• HTTPS encrypts:
• URL path of the requested document (web page)
• HTTP headers
• Contents of the document
• Form data (e.g., username and password)
• Cookies between the server and the browser

38CSED415 – Spring 2025

HTTPS connection

• The web browser initiates a TLS
connection to the web server
• After the TLS handshake, all HTTP requests

and responses are encrypted
• i.e., 𝑚&'(: HTTP request, 𝑚&'"#: HTTP response

Web browser Web server

Key derivation

𝐸 𝐶! , 𝑚"#$ 	||	𝑀𝐴𝐶 𝐼! , 𝑚"#$

𝐸 𝐶%, 𝑚"#&'	||	𝑀
𝐴𝐶 𝐼%, 𝑚"#&'

Secure connection
established

Certificate

𝐸(𝑘#', 𝑃𝑆)

ClientHello: 𝑅&

ServerHello: 𝑅'

39CSED415 – Spring 2025

HTTP vs HTTPS
http://[redacted].postech.ac.kr https://compsec.postech.ac.kr

40CSED415 – Spring 2025

HTTP vs HTTPS

• HTTP packet captured with Wireshark

URL, HTTP header,
contents, cookies, …
are publicly visible

41CSED415 – Spring 2025

HTTP vs HTTPS

• HTTPS packet captured with Wireshark

Everything is encrypted

Caution: HTTPS does not hide your identity

CSED415 – Spring 2025

Remaining Challenge:
Can we trust CAs?

43CSED415 – Spring 2025

Recall: Certificates are the key in TLS protocol

• Server sends its certificate
• Server’s identity (domain name) and its public key signed by

CA’s secret key

• The browser verifies the server’s certificate
• CA’s public key is embedded in the browser

• Recall: Lecture 12, trust anchor
• The browser uses the CA’s public key to verify the certificate

• Once verified, the browser trusts the server’s public key

44CSED415 – Spring 2025

Issues: Unknown CA

• What if the browser does not have the CA’s public key?
• Not all CA information is embedded
• Typical behavior: Warn the user that the website is not verified

• Connection can still be established, but the server’s legitimacy is not assured

• Potential problems
• The server indeed is a malicious server
• End-to-end security is broken

45CSED415 – Spring 2025

Issues: Revocation

• What if an attacker steals a server’s private key?
• The certificate with the corresponding public key is no longer valid
• TLS certificates have an expiry date, but it takes time to expire

• Solution: Certificate revocation lists (CRL)
• Recall: Lecture 12
• The CA occasionally sends out lists of certificates that should be

revoked
• Browsers must regularly update the revocation lists

46CSED415 – Spring 2025

Issues: Too many trusted CAs

• Recall: We designate multiple trust anchors to solve the
single-point-of-failure problem
• A CA might be compromised or malicious, and issue

fraudulent certificates
• A CA gets hacked
• An attacker bribes the CA to issue a fraudulent certificate

• Problem: Too many trust anchors
• Modern browsers trust 100~200 CAs
• One compromised CA is enough for attackers to launch large-scale

attacks (the weakest link matters!)

47CSED415 – Spring 2025

Issues: Too many trusted CAs

• Real-world incidents: Comodo SSL certificate breach (2011)
• Comodo was a major CA

• Not anymore
• Comodo’s account was compromised
• Iranian hacker issues nine fraudulent SSL certificates for popular

websites, including Gmail, Hotmail, Skype, …
• (although not known) the hacker could impersonate these websites

and intercept all TLS-encrypted traffic
• Again, end-to-end security is broken if one end is malicious

48CSED415 – Spring 2025

Issues: Too many trusted CAs

• Real-world incidents: DigiNotar server hack (2011)
• DigiNotar was another major CA
• Attacker (allegedly backed by Iranian government) compromised all

eight certificate-issuing servers of DigiNotar
• The attacker issued more than 500 fake certificates, including

Google’s

49CSED415 – Spring 2025

Issues: Trust anchors

• Real-world incidents: Symantec mis-issuance (2017)
• One of the largest providers of TLS certificates (not anymore)
• Symantec issued certificates without sufficiently validating the identity

of the entities requesting them
• They issued certificates for domains without verifying ownership

• “Hey Symantec, I own google.com. Can you issue a certificate?” à “Absolutely”
• They issued certificates for non-existent domains

• “Hey Symantec, I own xcvbmnzgirsjcxv.com. Can you issue a certificate?” à “Absolutely”

• 30K problematic certificates were issued, according to Google
• Chrome and Firefox revoked all Symantec-issued certificates

Still an unsolved problem!

50CSED415 – Spring 2025

Modern CA example: Let’s Encrypt

• To use TLS, every web server needs to obtain and maintain
certificates
• Most certificate providers charge money for issuing TLS certificates

• Let’s Encrypt (LE) issues certificates for free
• Web server requests a certificate
• LE sends the server a file to be uploaded
• The server uploads the file to the website
• LE verifies that the file has appeared on the website
• Identity verified (domain & ownership) à LE issues a certificate

51CSED415 – Spring 2025

Summary

• SSL/TLS is a fundamental protocol for secure communication
on the internet
• S/MIME secures email content end-to-end, providing

encryption and/or digital signatures
• Certificates and CAs remain a critical piece of the trust model

CSED415 – Spring 2025

Questions?

