Lec 13: Secure Communication

CSED415: Computer Security Spring 2025

Seulbae Kim

Administrivia

- This Thursday: 10-minute proposal presentations
 - Submission #1: A two-page proposal document, which must include:
 - Definition: What problem are you trying to solve?
 - Motivation: Why is this problem important?
 - Methodology: How do you plan to solve the problem?
 - Evaluation: How will you evaluate your solution's effectiveness?
 - Plan: What is your tentative timeline?
 - Submission #2: Slides for your in-class presentation
 - It is recommended to explicitly include the items above in your slides
 - Submission deadline: April 3 (Thu) by Noon

Administrivia

POSTECH

• Midterm exam:

- Time: Next Tuesday (April 8), 2:00-3:15 PM (75 minutes)
- Location: Classroom (Science Building II, Room #106)
- Format: Closed book, closed notes, closed laptop/phone exam
 - Allowed: One-page (US letter- or A4-sized) double-sided handwritten cheat sheet
- Structure: 7 main questions (each may have sub-questions)
- Scope: Lectures 1 to 13, Labs 01 and 02

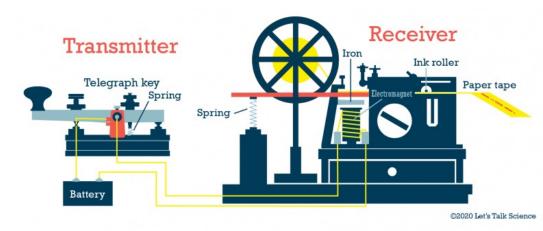
Study tips for midterm exam

POSTECH

- Review lecture slides and labs
 - Retry labs that were left incomplete
- Study in groups (highly recommended)
 - Ask what-if questions to each other
 - Try to answer together
- Focus on understanding concepts instead of memorizing
 - Utilize cheat sheet for referring to facts and formulas
 - Understand WHY something works or doesn't work
 - Think about potential attacks and defenses (practice threat modeling)

POSTECH

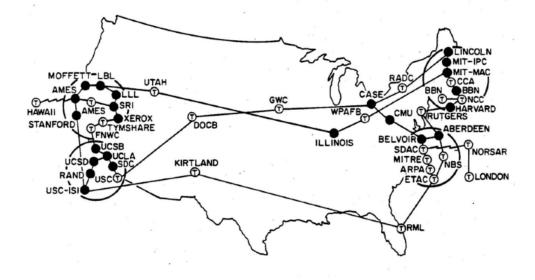
• Cryptography:

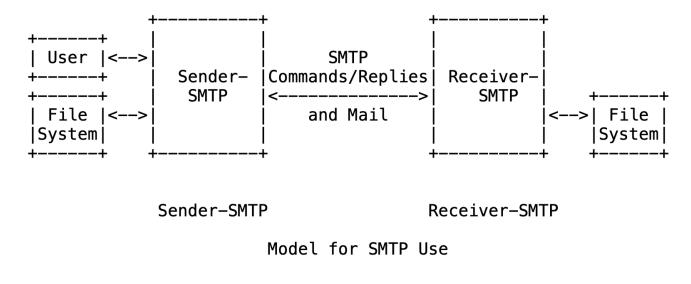

- A mechanism for enabling secure **communication** over insecure, untrusted channels
- Many network-based systems utilize cryptographic schemes for secure communication
 - To guarantee confidentiality, integrity, and authentication
- Today's topic:
 - How various internet services employ cryptographic primitives to ensure a secure connection in practice

Secure Emails

Brief history of email

- Physical transportation
 - Early "remote" messaging was done via physical delivery


- Electrical telegraphs & Morse code (1800s)
 - Introduced near-instant long-distance text communication over wires


Brief history of email

- ARPANET (Predecessor of modern internet)
 - Developed by the U.S. Department of Defense (1971)
 - The first email was sent via SNDMSG program on ARPANET
 - Introduced the @ symbol to separate the recipient's username from the host computer's address

Brief history of email

- SMTP (Simple Mail Transfer Protocol, 1980)
 - A standardized protocol for email transmission
 - Supports sending simple text messages

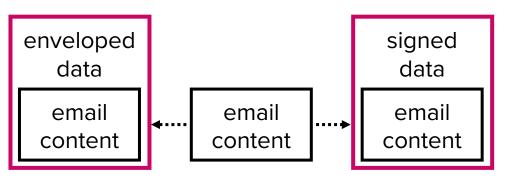
Img: RFC 821. Simple Mail Transfer Protocol

CSED415 – Spring 2025

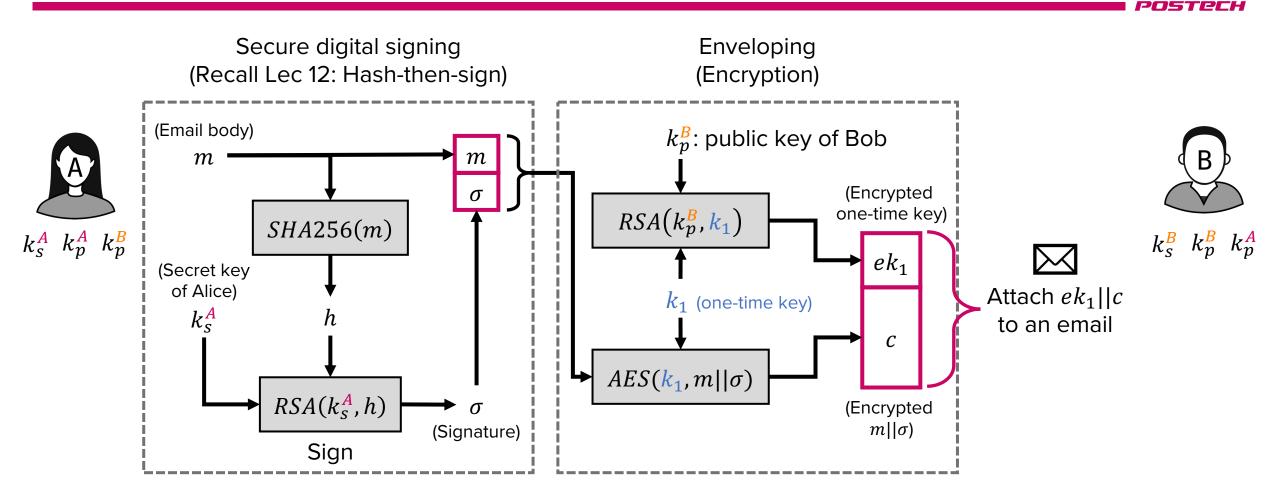
Brief history of email

- MIME (Multipurpose Internet Mail Extensions, 1991)
 - Extends email format to handle multimedia content (images, audio, ...)
 - Defines extra headers, such as:
 - MIME-Version
 - Content-Type
 - Text/plain, image/jpeg, audio/mp3, ...
 - Content-Disposition
 - Inline, attachment
 - Content-Transfer-Encoding
 - base64, ascii, ...

MIME-Version: 1.0 Content-Type: multipart/mixed; boundary=frontier This is a message with multiple parts in MIME format. --frontier


```
Content-Type: text/plain
This is the body of the message. --frontier
```

Content-Type: application/octet-stream Content-Transfer-Encoding: base64 PGh0bWw+CiAgPGhlYWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA+ VGhpcyBpcyB0aGUg Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9 ib2R5Pgo8L2h0bWw+Cg==


```
--frontier--
```

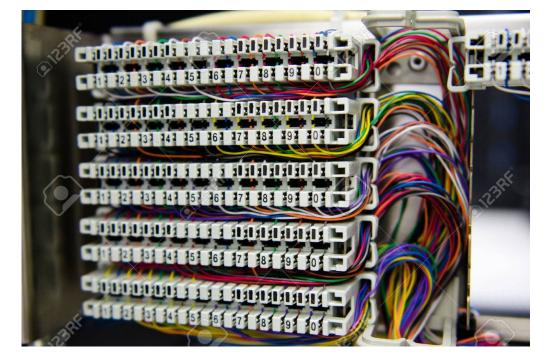
Key observation: None of these early protocols inherently provided security

- S/MIME: A set of MIME content types specifically designed to support encryption and/or digital signatures
 - e.g., Content-Type: application/pkcs7-mime (PKCS: public-key cryptography standards)
- Core functionality:
 - Enveloped data: Encrypts the message for confidentiality
 - Signed data: Digitally signs the message for integrity and authenticity
 - Signed and enveloped data: Combines both encryption and signing

S/MIME workflow

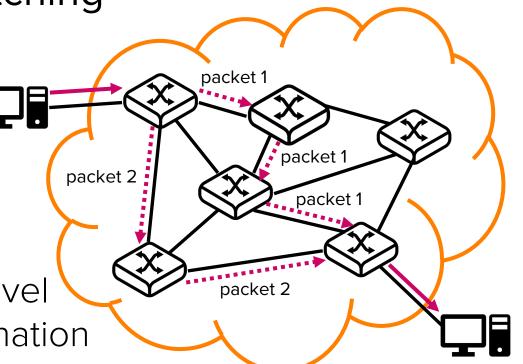
S/MIME email example

MIME-Version: 1.0 Message-Id: <9358910051929015@postech.ac.kr> Date: Tue, 02 Apr 2024 00:16:31 +0900 (Korea Standard Time) From: alice@postech.ac.kr To: bob@postech.ac.kr Subject: email example Content-Type: application/pkcs7-mime; name=smime.p7m; smime-type=enveloped-data Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename=smime.p7m

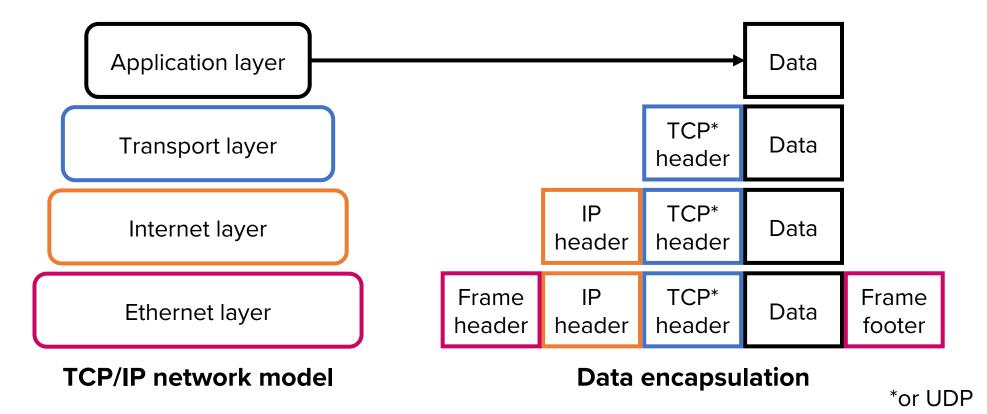

MIIBHgYJKoZIhvcNAQcDoIIBDzCCAQsCAQAxgcAwgb0CAQAwJjASMRAwDgYDVQQDEwdDYXJ sUlNBAhBGNGvHgABWvBHTbi7NXXHQMA0GCSqGSIb3DQEBAQUABIGAC3EN5nGIiJi2lsGPcP 2iJ97a4e8kbKQz36zg6...bGgzoyEd8Ch4H/dd9gdzTd+taTEgS0ipdSJuNnkVY4/M652jK LFf02hosdR8wQwYJKoZIhvcNAQcBMBQGCCqGSIb3DQMHBAgtaMXpRwZRNYAgDsiSf8Z9P43 LrY40xUk660cu1lXeCSF0S0p0J7FuVyU=

base64-encoded $ek_1 || c$ attachment

Secure Socket Layer (SSL) / Transport Layer Security (TLS)


POSTECH

- Remote communication before internet: Circuit switching
 - Legacy phone network
 - Establish a single route through a sequence of hardware devices for two nodes to communicate
 - Route == connected wire
 - Data (electric current) is sent over the route
 - The route is maintained until the communication ends


Telephone switchboard

- Internet communication: Packet switching
 - Data is split into smaller packets
 - Packets are transported independently through the network
 - Network switches determine the best route for each packet (routing protocol)
 - Consequently, different packets can travel different paths to reach the same destination

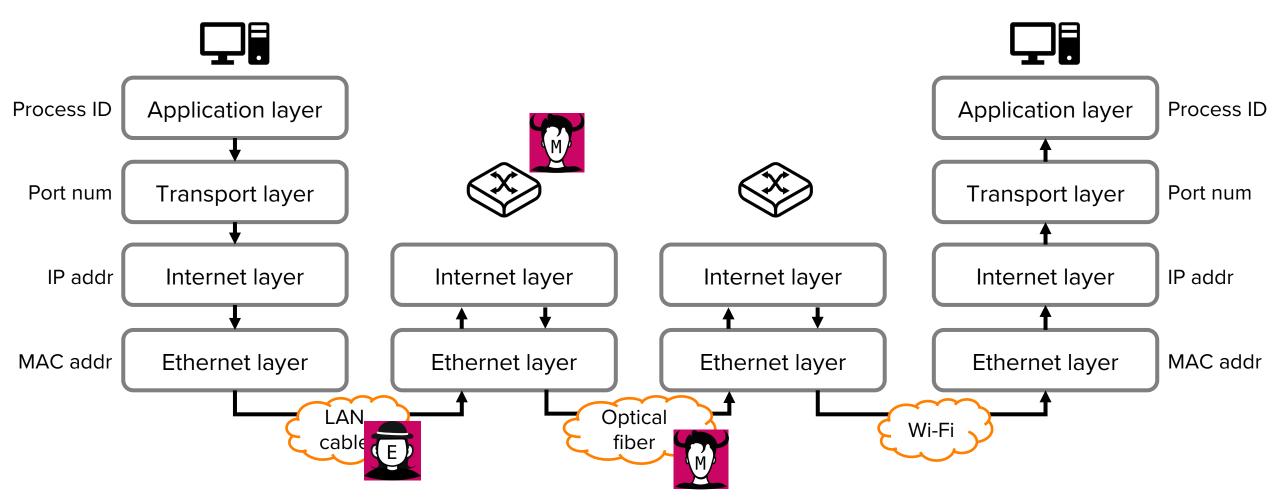
Packets sent over routers

- Layers in networking
 - Higher layers use the services of lower layers via encapsulation

POSTECH

I POSTECH

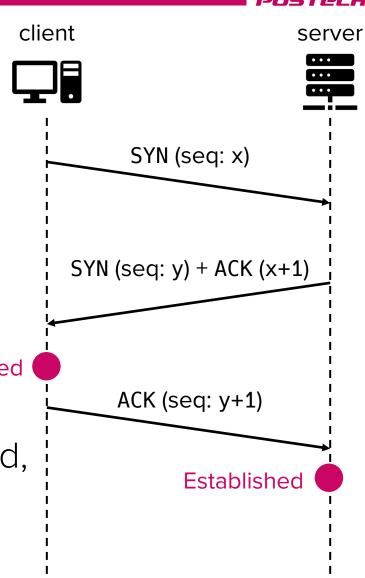
Logical and physical data flow



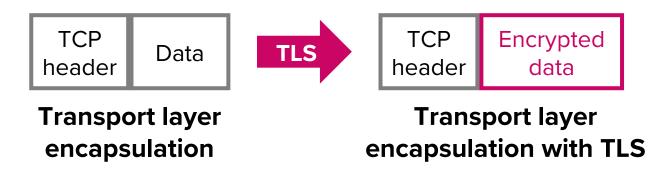
POSTECH

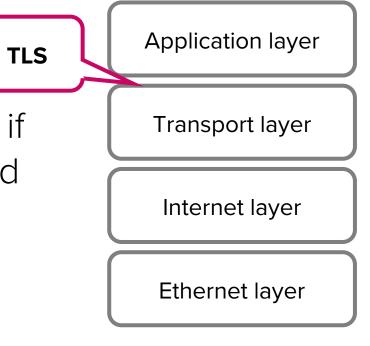
POSTECH

Confidentiality, integrity, authenticity?

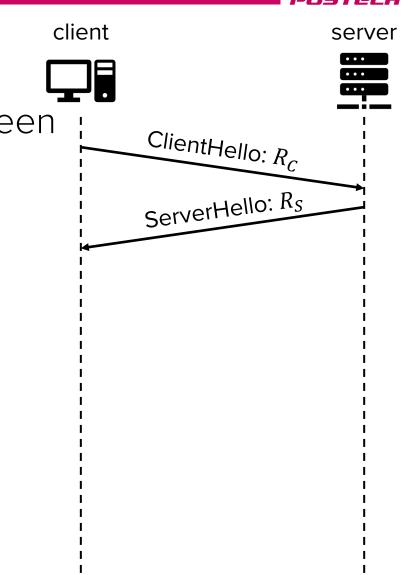

Background: Transport layer protocols

POSTECH

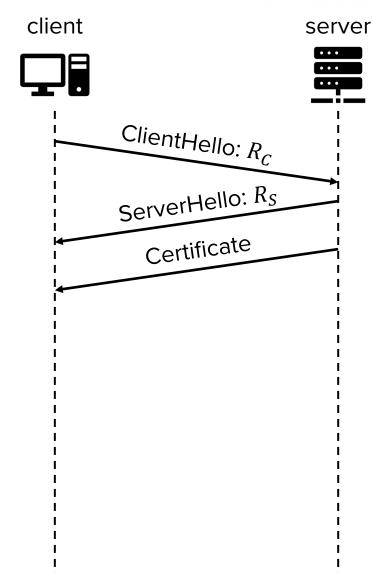

- TCP and UDP
 - TCP (Transmission Control Protocol): For reliable data transfer
 - Client and server establish connection via the 3-way handshake
 - Client SYN \rightarrow Server SYN-ACK \rightarrow Client ACK
 - UDP (User Datagram Protocol): For faster data transfer
 - Connection-less
 - Does not provide reliability nor message ordering

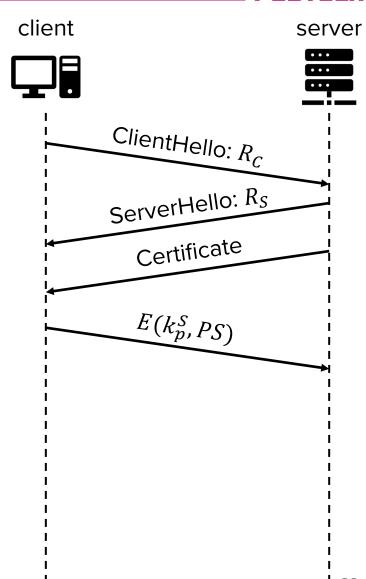

Background: TCP handshake

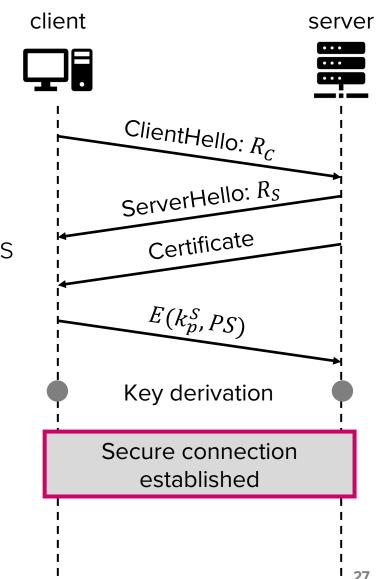
- 3-way handshake
 - Client selects an initial sequence number x and sends a SYN (synchronize) packet to the server
 - 2. Server selects an initial sequence number y and responds with a SYN+ACK (acknowledge) packet Established
 - 3. Client responds with an ACK packet
 - 4. Once the sequence numbers are synchronized, connection is established



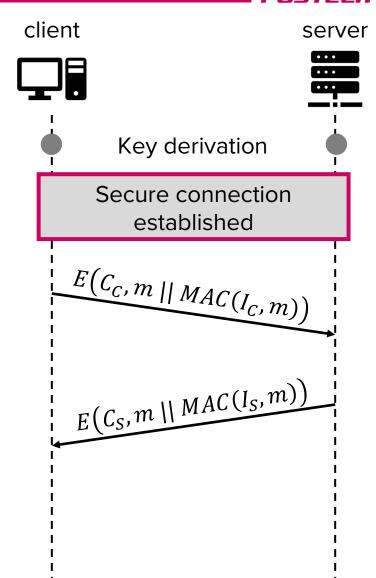
- Secure Sockets Layers protocol (SSL)
 - Outdated and replaced by TLS. "SSL" refers to TLS now
- Transport Layer Security protocol (TLS)
 - Built on top of TCP
 - Goal: End-to-end encryption and integrity, even if every intermediate node/connection is untrusted



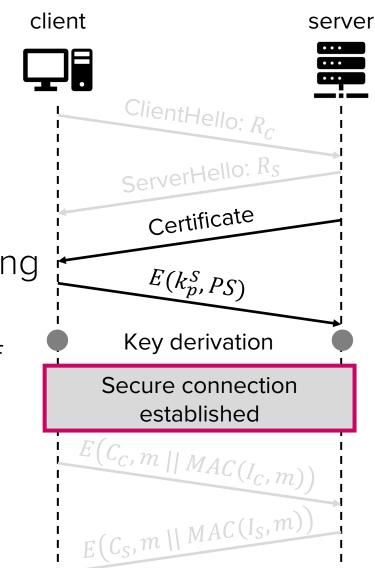

- Step 1: Exchange hellos
 - Assumption: A TCP connection has already been established via 3-way handshake
 - Client sends ClientHello
 - A 256-bit random number R_C
 - A list of supported cryptographic algorithms
 - Server sends ServerHello
 - A 256-bit random number R_S
 - The algorithm to use (chosen from the client's list)
 - R_c and R_s prevent replay attacks


- Step 2: Server sends its certificate
 - Recall: Certificate includes the server's identity and public key, signed by a trusted CA
 - Client verifies the server's certificate
 - Using the CA's public key
 - The client now knows the server's public key
 - Server's public key: k_p^s
 - The client is not yet sure if it is talking to the legitimate server (not an impersonator)
 - Since certificates are public, anyone can present anyone else's certificate

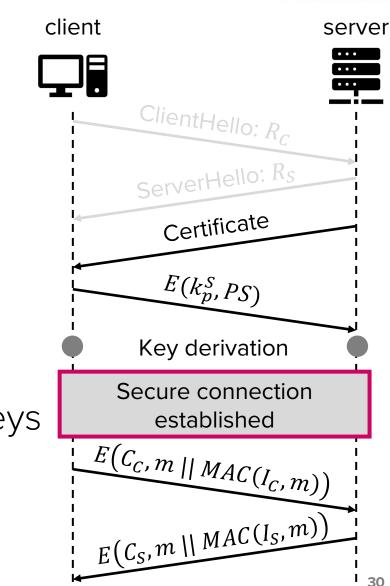
- Step 3: Share premaster secret
 - The client randomly generates a premaster secret (*PS*)
 - The client encrypts PS with the server's public key (k_p^S) and sends it to the server
 - The server decrypts PS using its secret key (k_s^S)
 - No one else can decrypt $E(k_p^S, PS)$
 - Therefore, if the server presents a valid *PS* later, the client can be assured that the server is not an impersonator



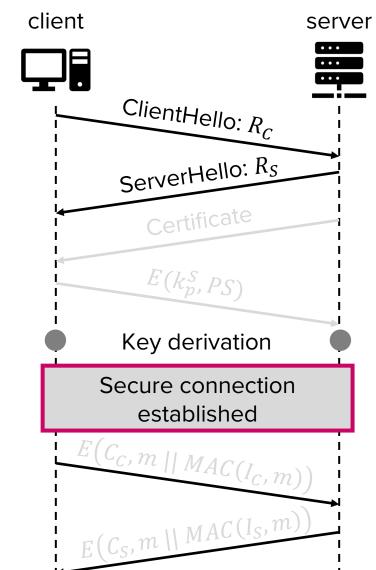
- Step 4: Derive symmetric session keys
 - Both sides derive session keys from the same R_C , R_S , and PS
 - Usually by seeding a PRNG with R_C , R_S , and PS
 - Any difference would result in different session keys
 - Four symmetric session keys are derived
 - C_C : Encryption key for client \rightarrow server msgs
 - C_S : Encryption key for server \rightarrow client msgs
 - I_C : For generating MAC of client \rightarrow server msgs
 - I_S : For generating MAC of server \rightarrow client msgs


TLS message exchange

- Messages can now be sent securely
 - Utilize Authenticated Encryption (AE)
 - With the derived session keys, generate MAC of m, append the MAC to m, and then encrypt
 - Note:
 - Even though Encrypt-then-MAC is considered safer (recall: Lecture 11), TLS uses MAC-then-Encrypt for backward compatibility with legacy applications


Security of TLS

- Authenticity: Can client make sure that it is talking to the legitimate server?
 - The server sends its certificate, so the client can verify it and obtain server's public key k_p^S
 - The server proves that it owns the corresponding secret key k_s^S by decrypting the encrypted PS
 - An impersonator cannot derive the same set of session keys as he/she does not own the secret key to decrypt the encrypted *PS*

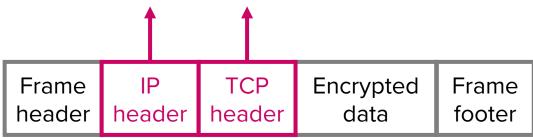

Security of TLS

- Confidentiality and Integrity: How can both parties ensure that attackers cannot read or tamper with their messages?
 - The attacker does not know PS
 - Cannot decrypt $E(k_p^S, PS)$ without k_s^S
 - The session keys are derived from PS
 - C_C , C_S , I_C , and I_S
 - Authenticated encryption using the session keys provide confidentiality and integrity

Security of TLS

- Robustness to replay attacks: How can both parties ensure that an attacker is not replaying old messages from a past TLS connection?
 - Every TLS handshake uses a different random values (R_c and R_s) that are exchanged during via ClientHello and ServerHello messages
 - The session keys are derived from $R_{\mathcal{C}}$ and $R_{\mathcal{S}}$
 - These keys are different for every TLS connection

What TLS does and doesn't


- TLS guarantees end-to-end security
 - Even if every entity between the client and the server is malicious, TLS provides a secure communication channel
 - Examples
 - A local attacker captures all Wi-Fi communications
 - The attacker cannot decipher or manipulate TLS messages w/o the session keys
 - A MitM tries to inject TCP packets
 - These packets will be rejected (cannot generate valid MACs w/o session keys)
 - Caveat: TLS does not guarantee end-to-end security if one end is malicious (e.g., communicating with a malicious server)
 - TLS only protects data in transit

What TLS does and doesn't

• TLS does not guarantee anonymity

- Anonymity: Hiding the client's and server's identities from attackers
- Attackers can still figure out who is communicating with TLS
 - Server's certificate, containing server's identity, is sent during the handshake
 - Attacker can still observe IP addresses and ports from the headers of underlying IP and TCP layers

Required for routing (i.e., locating src/destination), so cannot be encrypted

Encapsulation after TLS

What TLS does and doesn't

- TLS does not guarantee availability
 - Availability: Keeping the connection open in the face of attackers
 - Attackers can block or drop TLS packets to stop TLS connections
 - In other words, TLS connections can still be censored
 - South Korean government blocks access to porn and gambling websites

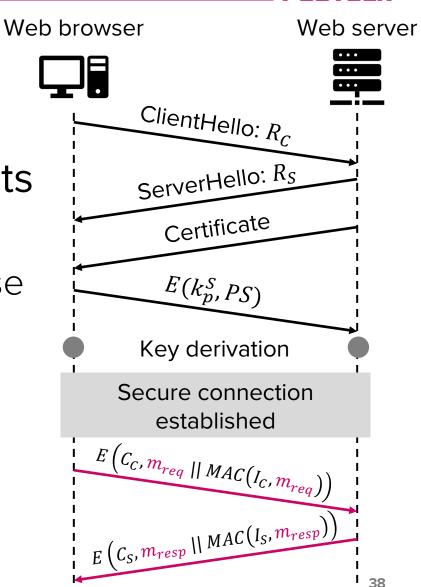
TLS in Action: HTTPS

HTTPS: HTTP over TLS

- Combination of HTTP (Hypertext Transfer Protocol) and TLS
 - TLS applied specifically for securing the communication between a web browser and a web server
- All modern browsers support HTTPS protocol
 - If not, avoid at all costs!
- URLs of the servers providing HTTPS connection start with https://

HTTPS: HTTP over TLS

Connection

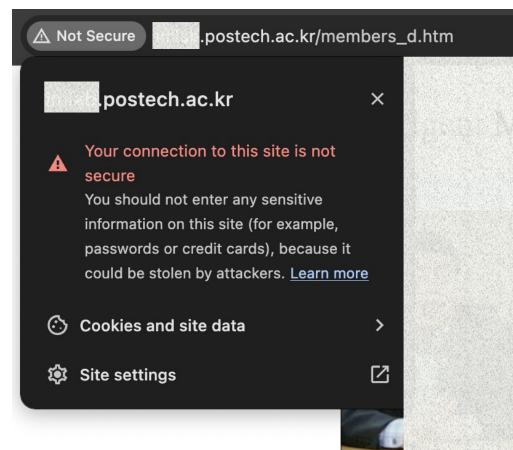

- HTTP connection uses port 80
- HTTPS connection uses port 443, which invokes TLS protocol

• HTTPS encrypts:

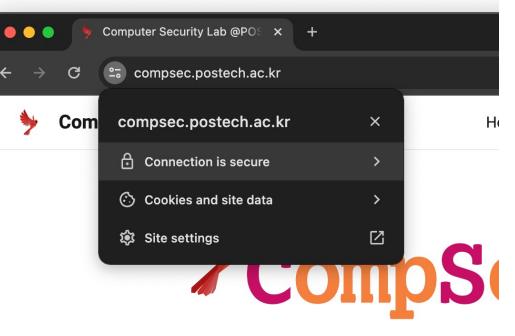
- URL path of the requested document (web page)
- HTTP headers
- Contents of the document
- Form data (e.g., username and password)
- Cookies between the server and the browser

HTTPS connection

- The web browser initiates a TLS connection to the web server
- After the TLS handshake, all HTTP requests and responses are encrypted
 - i.e., m_{req} : HTTP request, m_{resp} : HTTP response



STPCH


HTTP vs HTTPS

POSTPCH

http://[redacted].postech.ac.kr

https://compsec.postech.ac.kr

Computer Security Lab at

"Practical cyber-physical security: We hack, \boldsymbol{v} systems."

HTTP vs HTTPS

POSTECH

• HTTP packet captured with Wireshark

ip.	.dst_host==141.223.1	2.					
No.	Time	Source	Destination	Protocol	Length Info		
Г	64 4.456155	172.29.9.218	141.223.12.	ТСР	78 49530	→ 80 [SYN]	Seq=0
	70 4.460002	172.29.9.218	141.223.12.	ТСР	66 49530	→ 80 [ACK]	Seq=1
•	71 4.460253	172.29.9.218	141.223.12.	ТСР	1304 49530	→ 80 [ACK]	Seq=1
+>	72 4.460268	172.29.9.218	141.223.12.	HTTP	998 GET /	HTTP/1.1	
L	81 4.466938	172.29.9.218	141.223.12.	ТСР	66 49530	→ 80 [ACK]	Seq=2
_		(7004)		(======================================			-
	-		ts), 998 bytes captured				
	-		:9f:41:ba:74:f7), Dst: L		tr_49:a5:b9 (0	00:90:0b:4	9:a5:b
			2.29.9.218, Dst: 141.223				
		•	ort: 49530, Dst Port: 80		.39, Ack: 1, Le	en: 932	
		• •	tes): #71(1238), #72(932	2)]			
	ypertext Transfe						
>	321 / mm/, 111						
	Host: .pos						
	Connection: kee	•					
	Cache-Control:	•					
•		re-Requests: 1\r\n					
	•		; Intel Mac OS X 10_15_	• • •		-	
			l+xml,application/xml;q	=0.9,image	e/avif,image/w	/ebp,image/	/apng,>
]: gzip, deflate\r\n					
		e: en-US,en;q=0.9,ko					
>	[truncated]Coc	kie: _ga_E5Q6PMXQ9Q	=GS1.1.1707221956.1.0.1	707221956	.0.0.0; _ga_WB	3QR2KBZ9=0	3S1.1.1

HTTP vs HTTPS

POSTECH

• HTTPS packet captured with Wireshark

No.	Time	Source	Destination	Protocol	Length	Info		
_ 1	.39 7.214307	172.29.9.218	185.199.110.153	TLSv1.2	-	Application	n Data	
1	40 7.214360	172.29.9.218	185.199.110.153	TLSv1.2	105	Application	n Data	
1	45 7.226601	172.29.9.218	185.199.110.153	ТСР		65311 → 443		S
	46 7.226908	172.29.9.218	185.199.110.153	TLSv1.2	101	Applicatio	n Data	
Enc.	mo 116, 101 by	too on wire (000 hit	te) 101 bytee contured	(000 hitc)	on into	arface on0	14 0	
> Fra	me 146: 101 by	tes on wire (808 bit	ts), 101 bytes captured	(808 bits)	on inte	erface en0,	id Ø	
						•		5:
> Eth	ernet II. Src:	Apple ba:74:f7 (10:	9f:41:ba:74:f7). Dst:	LannerElect		•		5:
> Eth	ernet II. Src:	Apple ba:74:f7 (10:		LannerElect		•		5:
> Etł	ernet II. Src: ernet Protocol	Apple ba:74:f7 (10: Version 4, Src: 172	9f:41:ba:74:f7). Dst: 2.29.9.218, Dst: 185.19	LannerElect 9.110.153	r 49:a5:	:b9 (00:90:0	b:49:a	5:
> Eth > Int > Tra	ernet II. Src: ernet Protocol nsmission Cont	Apple ba:74:f7 (10) Version 4, Src: 172 rol Protocol, Src Po	9f:41:ba:74:f7). Dst:	LannerElect 9.110.153	r 49:a5:	:b9 (00:90:0	b:49:a	5:
> Eth > Int > Tra > Tra	ernet II. Src: ernet Protocol nsmission Cont nsport Layer S	Apple ba:74:f7 (10) Version 4, Src: 172 rol Protocol, Src Po ecurity	9f:41:ba:74:f7). Dst: 2.29.9.218, Dst: 185.19 ort: 65311, Dst Port: 4	LannerElect 9.110.153 43, Seq: 294	r 49:a5: 4, Ack:	:b9 (00:90:0	b:49:a	5:
> Eth > Int > Tra > Tra	ernet II. Src: ernet Protocol nsmission Cont nsport Layer S	Apple ba:74:f7 (10) Version 4, Src: 172 rol Protocol, Src Po ecurity	9f:41:ba:74:f7). Dst: 2.29.9.218, Dst: 185.19 ort: 65311, Dst Port: 4	LannerElect 9.110.153 43, Seq: 294	r 49:a5: 4, Ack:	:b9 (00:90:0	b:49:a	5:
> Eth > Int > Tra > Tra	ernet II. Src: ernet Protocol nsmission Cont nsport Layer S TLSv1.2 Record	Apple ba:74:f7 (10: Version 4, Src: 172 rol Protocol, Src Po ecurity Layer: Application	9f:41:ba:74:f7). Dst: 2.29.9.218, Dst: 185.19 ort: 65311, Dst Port: 4 Data Protocol: Hypertex	LannerElect 9.110.153 43, Seq: 294	r 49:a5: 4, Ack:	:b9 (00:90:0	b:49:a	5:
> Eth > Int > Tra > Tra	ernet II. Src: ernet Protocol nsmission Cont nsport Layer S TLSv1.2 Record Content Type	Apple ba:74:f7 (10: Version 4, Src: 172 rol Protocol, Src Po ecurity Layer: Application : Application Data	9f:41:ba:74:f7). Dst: 2.29.9.218, Dst: 185.19 ort: 65311, Dst Port: 4 Data Protocol: Hypertex	LannerElect 9.110.153 43, Seq: 294	r 49:a5: 4, Ack:	:b9 (00:90:0	b:49:a	5:
> Eth > Int > Tra > Tra	ernet II. Src: ernet Protocol nsmission Cont nsport Layer S TLSv1.2 Record Content Type	Apple ba:74:f7 (10: Version 4, Src: 172 rol Protocol, Src Po ecurity Layer: Application	9f:41:ba:74:f7). Dst: 2.29.9.218, Dst: 185.19 ort: 65311, Dst Port: 4 Data Protocol: Hypertex	LannerElect 9.110.153 43, Seq: 294	r 49:a5: 4, Ack:	:b9 (00:90:0	b:49:a	5:
> Eth > Int > Tra > Tra	ernet II. Src: ernet Protocol nsmission Cont nsport Layer S TLSv1.2 Record Content Type Version: TLS	Apple ba:74:f7 (10: Version 4, Src: 172 rol Protocol, Src Po ecurity Layer: Application : Application Data	9f:41:ba:74:f7). Dst: 2.29.9.218, Dst: 185.19 ort: 65311, Dst Port: 4 Data Protocol: Hypertex	LannerElect 9.110.153 43, Seq: 294	r 49:a5: 4, Ack:	:b9 (00:90:0	b:49:a	5:
> Eth > Int > Tra > Tra	ernet II. Src: ernet Protocol insmission Cont insport Layer S TLSv1.2 Record Content Type Version: TLS Length: 30	Apple ba:74:f7 (10: Version 4, Src: 172 rol Protocol, Src Po ecurity Layer: Application : Application Data 1.2 (0x0303)	9f:41:ba:74:f7). Dst: 2.29.9.218, Dst: 185.19 ort: 65311, Dst Port: 4 Data Protocol: Hypertex (23)	LannerElect 9.110.153 43, Seq: 294 «t Transfer	r 49:a5: 4, Ack: Protoco	:b9 (00:90:0 214, Len: 3 l	1 b:49: a	5:
> Eth > Int > Tra > Tra	ernet II. Src: ernet Protocol insmission Cont insport Layer S TLSv1.2 Record Content Type Version: TLS Length: 30	Apple ba:74:f7 (10: Version 4, Src: 172 rol Protocol, Src Po ecurity Layer: Application : Application Data 1.2 (0x0303)	9f:41:ba:74:f7). Dst: 2.29.9.218, Dst: 185.19 ort: 65311, Dst Port: 4 Data Protocol: Hypertex	LannerElect 9.110.153 43, Seq: 294 «t Transfer	r 49:a5: 4, Ack: Protoco	:b9 (00:90:0 214, Len: 3 l	1 b:49: a	5:
> Eth > Int > Tra > Tra	ernet II. Src: ernet Protocol nsmission Cont insport Layer S TLSv1.2 Record Content Type Version: TLS Length: 30 Encrypted Ap	Apple ba:74:f7 (10; Version 4, Src: 172 rol Protocol, Src Po ecurity Layer: Application : Application Data 1.2 (0x0303) plication Data: 933	9f:41:ba:74:f7). Dst: 2.29.9.218, Dst: 185.19 ort: 65311, Dst Port: 4 Data Protocol: Hypertex (23) fe623c9ecce5a49020f4613	LannerElect 9.110.153 43, Seq: 294 kt Transfer 7186c2842f30	r 49:a5: 4, Ack: Protoco 0d4952cc	:b9 (00:90:0 214, Len: 3 J J d431bc89f831	16:49:a 35]
> Eth > Int > Tra > Tra	ernet II. Src: ernet Protocol nsmission Cont insport Layer S TLSv1.2 Record Content Type Version: TLS Length: 30 Encrypted Ap	Apple ba:74:f7 (10; Version 4, Src: 172 rol Protocol, Src Po ecurity Layer: Application : Application Data 1.2 (0x0303) plication Data: 933	9f:41:ba:74:f7). Dst: 2.29.9.218, Dst: 185.19 ort: 65311, Dst Port: 4 Data Protocol: Hypertex (23)	LannerElect 9.110.153 43, Seq: 294 kt Transfer 7186c2842f30	r 49:a5: 4, Ack: Protoco 0d4952cc	:b9 (00:90:0 214, Len: 3 l	16:49:a 35]

Caution: HTTPS does not hide your identity

Remaining Challenge: Can we trust CAs?

Recall: Certificates are the key in TLS protocol

POSTECH

- Server sends its certificate
 - Server's identity (domain name) and its public key signed by CA's secret key
- The browser verifies the server's certificate
 - CA's public key is embedded in the browser
 - Recall: Lecture 12, trust anchor
 - The browser uses the CA's public key to verify the certificate
- Once verified, the browser trusts the server's public key

Issues: Unknown CA

- What if the browser does not have the CA's public key?
 - Not all CA information is embedded
 - Typical behavior: Warn the user that the website is not verified
 - Connection can still be established, but the server's legitimacy is not assured
- Potential problems
 - The server indeed is a malicious server
 - End-to-end security is broken

Issues: Revocation

- What if an attacker steals a server's private key?
 - The certificate with the corresponding public key is no longer valid
 - TLS certificates have an expiry date, but it takes time to expire
- Solution: Certificate revocation lists (CRL)
 - Recall: Lecture 12
 - The CA occasionally sends out lists of certificates that should be revoked
 - Browsers must regularly update the revocation lists

Issues: Too many trusted CAs

- Recall: We designate multiple trust anchors to solve the single-point-of-failure problem
- A CA might be compromised or malicious, and issue fraudulent certificates
 - A CA gets hacked
 - An attacker bribes the CA to issue a fraudulent certificate
- Problem: Too many trust anchors
 - Modern browsers trust 100~200 CAs
 - One compromised CA is enough for attackers to launch large-scale attacks (the weakest link matters!)

Issues: Too many trusted CAs

- Real-world incidents: Comodo SSL certificate breach (2011)
 - Comodo was a major CA
 - Not anymore
 - Comodo's account was compromised
 - Iranian hacker issues nine fraudulent SSL certificates for popular websites, including Gmail, Hotmail, Skype, ...
 - (although not known) the hacker could impersonate these websites and intercept all TLS-encrypted traffic
 - Again, end-to-end security is broken if one end is malicious

Issues: Too many trusted CAs

- Real-world incidents: DigiNotar server hack (2011)
 - DigiNotar was another major CA
 - Attacker (allegedly backed by Iranian government) compromised all eight certificate-issuing servers of DigiNotar
 - The attacker issued more than 500 fake certificates, including Google's

Issues: Trust anchors

- Real-world incidents: Symantec mis-issuance (2017)
 - One of the largest providers of TLS certificates (not anymore)
 - Symantec issued certificates without sufficiently validating the identity of the entities requesting them
 - They issued certificates for domains without verifying ownership
 - "Hey Symantec, I own google.com. Can you issue a certificate?" \rightarrow "Absolutely"
 - They issued certificates for non-existent domains
 - "Hey Symantec, I own xcvbmnzgirsjcxv.com. Can you issue a certificate?" \rightarrow "Absolutely"
 - 30K problematic certificates were issued, according to Google
 - Chrome and Firefox revoked all Symantec-issued certificates

Still an unsolved problem!

Modern CA example: Let's Encrypt

POSTECH

- To use TLS, every web server needs to obtain and maintain certificates
 - Most certificate providers charge money for issuing TLS certificates
- Let's Encrypt (LE) issues certificates for free
 - Web server requests a certificate
 - LE sends the server a file to be uploaded
 - The server uploads the file to the website
 - LE verifies that the file has appeared on the website
 - Identity verified (domain & ownership) \rightarrow LE issues a certificate

- SSL/TLS is a fundamental protocol for secure communication on the internet
- S/MIME secures email content end-to-end, providing encryption and/or digital signatures
- Certificates and CAs remain a critical piece of the trust model

Questions?