
Seulbae Kim

CSED415: Computer Security
Spring 2025

Lec 17: Access Control

2CSED415 – Spring 2025

Recap

• User authentication
• Coarse-grained gatekeeper for the entire system

• Makes a binary decision: Grant or deny access

System entry pointUser

Authentication

3CSED415 – Spring 2025

Today’s topic: Access control

• Definition: Process of deciding whether to grant or deny a
specific request to use an information or resource

System resourcesSystem entry pointUser

Authentication
Access control

Access control

Access control

4CSED415 – Spring 2025

A nightclub analogy

• Authentication:
• ID check at the gate

• Access control:
• Over 18: May enter the club
• Over 21: May purchase/consume alcohol
• On artist list: May access backstage and perform
• On VIP list: May access the VIP lounge
à Defines what an authenticated user is allowed to do

5CSED415 – Spring 2025

Models for access control

• Core entities
• Subject: An entity that requests access

• Owner: Creator of a resource
• Note: Ownership is exclusive; a resource cannot be co-owned

• Group: Named collection of users who can exercise access rights
• Others: Users who are not the owner nor in group

• Object: A resource to which access is controlled
• Files, processes, memory, …

6CSED415 – Spring 2025

Models for access control

• Access rights: Describe how a subject may access an object
• File access rights:

• Read: View data
• Write: Add, modify, or delete data
• Execute: Run as a program

• Directory access rights:
• Read: List directory entries
• Write: Create or delete files
• Execute: Enter inside

7CSED415 – Spring 2025

Two access control policy families

• DAC: Discretionary Access Control
• Controls access based on the identity of the requestor and

per-resource rules
• Owner of the resource determines access rights (hence discretionary)

• MAC: Mandatory Access Control
• Controls access based on security labels and clearances

enforced by the system
• Users cannot override policy (hence mandatory)

8CSED415 – Spring 2025

Discretionary Access Control
(DAC)

9CSED415 – Spring 2025

Elementary approaches

• Authentication == Access control
• Allow access to all objects to all authenticated subjects
• Drawback:

• Only applicable to a single-subject, single-object setting
• e.g., A physical safe

• If you can open it (authentication),
then you can access everything inside (access control)

10CSED415 – Spring 2025

Elementary approaches

• Blacklists and whitelists
• Blacklist: Allow by default, only deny blacklisted subjects
• Whitelist: Deny by default, only allow whitelisted subjects
• Drawbacks:

• Only available for multiple-subject, single-object environments
• e.g., Email spam filters

• Everyone except those who are blacklisted (subjects) can send you (object) email
• Both lists can grow quite large

à How can we extend these elementary approaches
 for modern systems with multiple subjects and objects?

11CSED415 – Spring 2025

Access control matrix (ACM)

• Allow multi-subject, multi-object access control
• Control:
• access(subject, object) = 1 or 0

• 1 (true): access granted
• 0 (false): access denied

A B C D
Alice 1 0 0 1
Bob 0 1 1 1

Claire 1 0 0 0
Dave 0 1 1 1

Su
bj

ec
ts

Objects

12CSED415 – Spring 2025

Access control matrix (ACM)

• ACM can be generalized to allow finer-grained access
controls using access rights:
• None (-), Own (O), Read (R), Write (W), Execute (X)

• Problems
• ACM is a “sparse matrix” by nature

• Incurs high storage overhead
• Size of ACM grows significantly

as the number of subjects and objects
increases

A B C D
Alice R - - ORWX
Bob - RW ORW RWX

Claire ORW - - -
Dave - ORW R RWX

Objects

Su
bj

ec
ts

13CSED415 – Spring 2025

Access control lists (ACL)

• Slice ACM by columns (objects)

• Use cases
• Traditional OS filesystems

(Linux, Windows)

Objects

Su
bj

ec
ts

A B C D
Alice R - - ORWX
Bob - RW ORW RWX

Claire ORW - - -
Dave - ORW R RWX

Claire

Own
R
W

NULL

Object A Alice

R

*next

Bob

R
W
X

*next

Object D Alice
Own

R
W
X

*next

Dave

R
W
X

NULL

14CSED415 – Spring 2025

Capability lists (C-list)

• Slice ACM by rows (subjects)

• Use cases
• Microkernels (seL4)
• FreeBSD Capsicum

Su
bj

ec
ts

A B C D
Alice R - - ORWX
Bob - RW ORW RWX

Claire ORW - - -
Dave - ORW R RWX

Obj D
Own

R
W
X

NULL

Alice Obj A

R

*next

Obj C

R

*next

Dave Obj B

Own
R
W

*next

Obj D

R
W
X

NULL

Objects

15CSED415 – Spring 2025

ACL vs C-list

• Which one is better?
1. Checking efficiency

• ACL
• Fast: Who can access Object A?

• Single iteration
• Slow: Which objects can Alice access?

• Need to scan all ACLs
• C-list

• Fast: Which objects can Alice access?
• Single iteration of Alice’s C-list

• Slow: Who can access Object A?
• Need to search everyone’s C-lists

Claire

Own
R
W

NULL

Object A Alice

R

*next

Obj D
Own

R
W
X

NULL

Alice Obj A

R

*next

16CSED415 – Spring 2025

ACL vs C-list

• Which one is better?
2. Revocation (removing a subject’s access to an object)

• ACL: Straightforward
• Alice (owner) can remove Bob’s permissions from the ACL of object D

• C-list: Hard
• Alice (owner) cannot control Bob’s C-list. System needs to intervene

Bob

R
W
X

*next

Object D Alice
Own

R
W
X

*next

Dave

R
W
X

NULL

17CSED415 – Spring 2025

ACL vs C-list

• Which one is better?
3. Accountability (e.g., a sensitive file has been accessed and you

want to find potential subject)
• ACL: Easy

• All information is available in one place, i.e., the ACL of the file
• C-list: Hard

• Need system-wide capability checks to investigate all subjects

18CSED415 – Spring 2025

ACL vs C-list

• Which one is better?
4. Delegation (Alice wants Bob to take her permissions)

• ACL: Slow
• Because ACL is slow at finding “Which objects can Alice access?”

• C-list: Easy
• Alice’s C-list can be passed onto Bob

Overall, ACL offers “natural” solutions to daily access control situations
(accessing objects, revoking access, forensics, …)

But are there any problems that ACL cannot handle?

19CSED415 – Spring 2025

Confused deputy problem

• Setting
• Imagine a pay-per-use compiler

• Command: $ compiler input_filename output_filename
• System wants to charge users when they use the compiler
• The compiler updates a billing file after it is executed

• The compiler has RW permissions for the billing file, but Alice doesn’t
• Alice wants to use the compiler

• Alice has RX permissions for compiler Objects

Su
bj

ec
ts

compiler billing
Alice RX -

compiler RX RW

Access Control Matrix

20CSED415 – Spring 2025

Confused deputy problem

• Malicious behavior of Alice
• Alice executes the compiler several times to compile programs

• The compiler updates the billing file with Alice’s records
• Then, Alice executes:

• $ compile input_filename billing

• The billing file gets corrupted
• The compiler, a deputy acting on behalf of Alice, is confused!
• Alice can walk away without paying anything Objects

Su
bj

ec
ts

compiler billing
Alice RX -

compiler RX RW

Access Control Matrix

21CSED415 – Spring 2025

Confused deputy problem

• What’s the issue with ACL?
• access(Alice, compiler, execute) = 1
• access(compiler, billing, write) = 1

Alice compiler billing

1 1
is considered okay by ACL!

Objects

Su
bj

ec
ts

compiler billing
Alice RX -

compiler RX RW

Access Control Matrix

22CSED415 – Spring 2025

Confused deputy problem

• C-list can solve this problem through explicit delegation
• Alice does not have a capability to write to the billing file
• Alice must delegate her C-list to the compiler when executing it
• The compiler, if running on behalf of Alice, cannot edit the billing file
à Free from the confused deputy problem

Su
bj

ec
ts

compiler billing
Alice RX -

compiler
(on behalf
of: Alice)

RX -

Access Control Matrix

Objects

Downside: The system should
implement an additional
monitor to write to Billing

23CSED415 – Spring 2025

DAC in Practice

24CSED415 – Spring 2025

Unix-like systems use ACL

• Background
• In Unix, every access-controlled resource is represented as a file

• Regular files
• Directories
• Memory
• Device drivers
• Named pipes
• Sockets
• etc.

25CSED415 – Spring 2025

Unix-like systems use ACL

• Background
• Each file has an <owner (UID), group (GID), others>

• Owner is the primary controller, represented by UID
• Group is a list of user accounts, represented by GID
• Others is everyone else
• User’s details are in /etc/passwd

• csed415-lab04:x:2104:2104::/home/csed415-lab04:/bin/bash

• Group details are in /etc/group
• csed415-lab04:x:2104:

uid gid home directory login commandusername

group name gid member list (empty)

26CSED415 – Spring 2025

Unix-like systems use ACL

• ACL permissions
• Available permissions are read (r), write (w), and execute (x)
• Original implementation: 9-bit representation

• 3 bits for the owner, 3 bits for the group, 3 bits for the others
• e.g., rwxrw-r-- :

• The owner can read, write, and execute
• Members in the group can read and write
• Everyone else can only read

27CSED415 – Spring 2025

Unix-like systems use ACL

• When applied on directories:
• Read: List contents of directory
• Write: Create or delete files in directory
• Execute: Use anything in or change working directory to directory

mkdir /tmp/perm
cd /tmp/perm
mkdir kkk
stat kkk | grep Access
cd kkk
cd ..
chmod a-x kkk
stat kkk | grep Access
cd kkk

à shows (0775/drwxrwxr-x)

à can cd (change directory) to kkk

à remove x permission from all (user, group, others)

à access denied

à temporary directory for testing

à shows (0664/drw-rw-r--)

28CSED415 – Spring 2025

Unix-like systems use ACL

• Extended permissions: Available on modern Linux/macOS
• SetUID: If set, program runs as the owner no matter who executes it
• SetGID: If set, program runs as a member of the group

• “Runs as” == Runs with the same privileges as
• Examples:

• Lab target binaries

• sudo

$ stat /home/csed415-lab03/target | grep Access
Access: (4750/-rwsr-x---) Uid: (21003/lab03-solved) Gid: (2103/csed415-lab03)

$ stat /usr/bin/sudo | grep Access
Access: (4755/-rwsr-xr-x) Uid: (0/ root) Gid: (0/ root)

SetUID

SetUID

29CSED415 – Spring 2025

Unix-like systems use ACL

• Extended permissions: Available on modern Linux/macOS
• Sticky bit

• Originally used to lock file in memory (sticky!)
• Now used on directories to limit delete operation

• If sticky bit is set, requester must own file or directory to delete
• Other users cannot delete even with write permission

• Example
cd /tmp/perm
mkdir mmm
chmod +t mmm
stat mmm | grep Access à shows (1775/drwxrwxr-t)

à temporary directory for testing

30CSED415 – Spring 2025

Unix-like systems use ACL

• Representing permissions
• Numeric representation of permission bits consists of four digits

• User, group, others permissions (Last three digits):

• Special permissions (First digit):

Bit position 2 1 0
Permission Read Write Execute

r: 2! = 4 w: 2" = 2 x: 2# = 1
à rwx: read + write + execute = 4 + 2 + 1 = 7
à rw: read + write = 4 + 2 = 6

Bit position 2 1 0
Permission setuid setgid sticky bit

Represent full permission with 4 digits:
special owner group others

Q) what does 4750 mean?

setuid: 2! = 4

Q) what does 3000 mean?

setgid: 2" = 2

31CSED415 – Spring 2025

Unix-like systems use ACL

• When does ACL check happen?
• Creating

• creat(filename, mode);
• open(filename, flags, mode); // specify O_CREAT in flags to create file

• Opening
• int fd = open(filename, flags);

• flags: O_RDONLY, O_WRONLY, or O_RDWR
• OS returns a file descriptor (fd) if the file exists

• ACL check happens at this stage!
• System traverses the file’s ACL and checks whether the permission in the open flags

match the subject’s access rights
• Afterwards, the file can be accessed through the file descriptor (fd)

32CSED415 – Spring 2025

Unix-like systems use ACL

• When does ACL check happen?
• Reading

• read(fd, buf, count);
• read count bytes and store in buf from the open file referred to by the fd

• Writing
• write(fd, buf, count);

• write count bytes from buf to the open file referred to by the fd

• Closing
• close(fd);

• Closes a file descriptor (invalidates the reference)

Reading and writing does not involve any permission check à performance!

33CSED415 – Spring 2025

Unix-like systems use ACL

• Interacting with files in Unix-like systems through syscalls
• Example: open()’s permission check

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>

int main(void) {
 int fd = open("myfile", O_RDWR);
 printf("fd: %d\n", fd);

 char* buf = strerror(errno);
 printf("Error: %s\n", buf);

 return 0;
}

à Test with varying permissions of myfile

34CSED415 – Spring 2025

Attacking Access Control

35CSED415 – Spring 2025

TOCTOU vulnerability

• Time-of-check to time-of-use (TOCTOU)
• Access permission checking is performed when a file is opened
• Once checked, the permission remains available until the file is

explicitly closed (or the process terminates and implicitly closed)
• read() or write() use the granted descriptor without re-checking

• What if an attacker alter the permissions between check and use?
à Time-of-check to time-of-use vulnerability

36CSED415 – Spring 2025

TOCTOU vulnerability

• Time-of-check to time-of-use (TOCTOU)
• Example: vi (predecessor of vim)

• vi keeps a backup of the original file upon save
• e.g., Original filename: file
• Save renames file to file.bak, creates a new file named file, and writes contents

• Tricky situation: Handling ownership
• e.g., If we run vi as root, modify alice_file that Alice owns, and save,

• rename("alice_file", "alice_file.bak"); retains the permissions
• open("alice_file", O_CREAT); à owned by root, since vi is running as root
• vi needs run chown("alice_file", alice_uid, alice_gid); to change the

owner of alice_file to Alice

37CSED415 – Spring 2025

TOCTOU vulnerability

• Time-of-check to time-of-use (TOCTOU)

rename("alice_file", "alice_file.bak");

open("alice_file", O_CREAT);

chown("alice_file", alice_uid, alice_gid);

vi (Run as root)

$ ln –s /etc/shadow alice_file
Attacker runs:

// TOC: root has permissions to create alice_file

// TOU: alice_file is no longer the created file

Result: /etc/shadow is owned by Alice

38CSED415 – Spring 2025

Summary

• Access control allows us to determine if a request from a
subject to access an object can be granted
• ACLs and C-lists are two ways to represent states used for

discretionary access control decisions
• Unix-like systems use ACL for access controls

39CSED415 – Spring 2025

Coming up next

• Information flow control problem
• With DAC, Alice can never be sure that sensitive data she shares with

Bob will not be further shared with others
à Motivation for Mandatory Access Control (MAC)

40CSED415 – Spring 2025

Questions?
(Including Midterm exam and

Lab 04)

