
Seulbae Kim

CSED415: Computer Security
Spring 2025

Lec 23: DoS and Firewalls

2CSED415 – Spring 2025

Administrivia

• Lab 05 has been released
• Final lab assignment
• Due the end of May 23 (Fri)

• Group project
• Final presentation: May 27 and 29
• All teams should submit their final reports, source code, and

presentation slides by the end of May 26

3CSED415 – Spring 2025

Recap

• Previously discussed: Compromising confidentiality and
integrity
• Prerequisites:

• Skilled attacker
• Program with vulnerabilities
• Flawed security policy
• Entry points and exfiltration channels

How about availability? à Today’s topic

4CSED415 – Spring 2025

Denial of Service (DoS)

5CSED415 – Spring 2025

Availability and Denial of Service

• Availability
• Ensuring that a network service is accessible for legitimate users

• Denial of Service (DoS)
• Attacks designed to disrupt availability, making services inaccessible

to legitimate users

6CSED415 – Spring 2025

Availability and Denial of Service

• Motivations behind DoS attacks
• Competitive advantage between rival services
• Financial gain through ransom demands
• Warfare tactics
• Personal amusement or revenge

7CSED415 – Spring 2025

DoS in real life

8CSED415 – Spring 2025

DoS in real life

9CSED415 – Spring 2025

DoS in real life

10CSED415 – Spring 2025

DoS attack strategies

• Exploiting software flaws
• Security vulnerabilities can lead to service disruption

• e.g., exploit a buffer overflow and execute system("shutdown now");

• Resource exhaustion
• Every computing system has limited resources
• Attacker consumes all resources so legitimate users cannot use them
• Identifying and targeting system bottlenecks is sufficient to cause

disruption

11CSED415 – Spring 2025

DoS attack strategies

• Bottlenecks
• The component of the system with the least resources

• Different components have different resource limits
• The attacker only needs to exhaust the bottleneck

• e.g., the component with the least CPU time allocated, the component with
the smallest amount of memory allocated, …

12CSED415 – Spring 2025

DoS targets

• Application-level DoS
• Attacks on specific applications running on a host

• Network-level DoS
• Attacks targeting network protocols to impair host connectivity

13CSED415 – Spring 2025

Application-level DoS

14CSED415 – Spring 2025

Application-level DoS

• Target application-specific resources
• Attackers exploit resource-handling asymmetry:
• Small amount of attack input
• Large amount of resource consumed to handle the input

15CSED415 – Spring 2025

Resource consumption

• Idea: Force the server to consume all its resources
• Potential payloads

• Exhaust filesystem space:

• Exhaust main memory:

• Exhaust process table and CPU cycles (fork bomb):

int fd = open("/tmp/junk", O_CREAT | O_RDWR, 0664);
char buf[4096];
while (1) {write(fd, buf, 4096);}

while (1) {malloc(10000000000);}

while (1) {fork();}

16CSED415 – Spring 2025

Resource consumption

• Idea: Force the server to consume all its resources
• Fork bomb explained

Exhausts OS process table, CPU cycles, and memory

$ man fork
fork() creates a new process by duplicating the calling process. The new process is referred
to as the child process. The calling process is referred to as the parent process.
The child process and the parent process run in separate memory spaces. The child process
is an exact duplicate of the parent process.

while (1) {fork();}

while (1) {fork();} while (1) {fork();}

while (1) {fork();} while (1) {fork();} while (1) {fork();} while (1) {fork();}

17CSED415 – Spring 2025

Algorithmic complexity attacks

• Supplying inputs that trigger worst-case scenarios for
algorithms and data structures
• e.g., consider an application that runs quicksort on user data

• Average time complexity: 𝑂(𝑛	𝑙𝑜𝑔 𝑛)
• Worst-case: 𝑂 𝑛! // when?

18CSED415 – Spring 2025

Defenses against application-level DoS

• Isolation
• Ensure one user’s actions do not affect other users’ experience
• e.g., modularize / containerize services (e.g., Docker)

User authentication Video streaming Recommendation

DOS

Authenticated users
are not affected

19CSED415 – Spring 2025

Defenses against application-level DoS

• Quota allocation
• Ensure that users can only access a certain amount of resources

• e.g., rlimit: Kernel-level resource limits defined per process
struct rlimit lim;
lim.rlim_cur = 512;
lim.rlim_max = 1024;
setrlimit(resource, &lim);

- RLIMIT_AS: Max size of this process’s virtual memory
- RLIMIT_CPU: Amount of CPU time this process can consume
- RLIMIT_FSIZE: Max size of files that this process may create
- RLIMIT_NOFILE: Max # of file descriptors that can be opened by this process
- RLIMIT_NPROC: Max # of processes that can be forked by this process
 …

à Sets the process’s resource soft limit (initial config) to 512 and hard limit (upper bound) to 1024,
 where resource can be one of:

20CSED415 – Spring 2025

Defenses against application-level DoS

• Require proof-of-work
• Force users to spend some of their resources to make requests
• Idea: Make DoS expensive for attackers

• e.g., CAPTCHA

• Overprovisioning
• Allocate excessive amount of resource

• A costly solution
• Applicable if the importance of availability far outweighs the money

• e.g., CDN (content delivery network) ensures availability by geographically
distribute cache servers

21CSED415 – Spring 2025

Network-level DoS

22CSED415 – Spring 2025

Network-Level DoS

• Attack network protocols to affect victim’s internet access
• Overwhelm victim’s bandwidth

• Bandwidth: The amount of data that can be uploaded and downloaded
through a channel within a given time
• Attacker can send large packets

• Overwhelm victim’s packet processing capability
• Example: The server can process 50 packets per second. Attacker sends the

server 500 packets per second.
• Attacker can send many small packets

23CSED415 – Spring 2025

Distributed Denial-of-Service (DDoS)

• DDoS: Using multiple systems to overwhelm target system
• Attacker can consume a huge amount of victim’s bandwidth by

controlling many bots (i.e., a botnet)
• Packet filters to distinguish DDoS traffic from normal traffic can be

evaded because bots send packets from different locations
• Blocking several IP addresses is not effective

24CSED415 – Spring 2025

Amplification DoS

• Amplification DoS: Using an amplifier to overwhelm the target
more effectively
• Some services produce a significantly larger response compared

to the size of the request
• Attackers can send a small request with spoofed source IP address

(e.g., disguising the sender as the victim) to exploit such services,
causing a large volume of data to be sent to the victim

25CSED415 – Spring 2025

Amplification DoS

• Example: Domain Name Server (DNS) amplification
• DNS lookup

• Attack

Hey, I’m Bob. What are the IP addresses of google.com? Recursively resolves the
domain name to find all

IP addresses[216.58.220.110, 216.58.220.111, 216.58.210.112, ...]

Hey, I’m Bob.
Resolve google.com?

Resp: Thousands of IP addresses

Amplified responses

DoS

26CSED415 – Spring 2025

Defenses against network-level DoS

• Packet filtering:
• Drop packets based on source IP or suspicious patterns

• e.g., Discard packet if source IP is known attacker’s IP
• Limitations:

• Attack packets come from multiple IP addresses (DDoS)
• Attackers can spoof source IP address to make attack packets look like they

are coming from multiple IP addresses

27CSED415 – Spring 2025

Stateful DoS

28CSED415 – Spring 2025

SYN flooding

• Transmission Control Protocol (TCP)
• Stateful protocol (recall Lecture 13)

• The server need to allocate some memory
for each connection established
• Store states: sequence numbers, ack numbers, …

• The server expects an ACK packet

client server

SYN (seq: x)

SYN (seq: y) + ACK (x+1)

ACK (seq: y+1)
Established

Established

Wait for
ACK (y+1)

Store y

29CSED415 – Spring 2025

SYN flooding

• SYN flooding attack
• Attacker establishes many connections

with the server
• Force the server to consume excessive memory

• Attacker’s asymmetric advantage:
• Sending the initial SYN packet is sufficient

to make the server waste its resources
• In contrast, attacker does not waste much of

his/her own resources

attacker server

SYN (seq: x)

SYN (seq: y) + ACK (x+1)

ACK (seq: y+1)

Store y

Wait for
ACK (y+1)

30CSED415 – Spring 2025

Defenses against SYN flooding

• Overprovisioning: Ensure the server has a plenty of memory
• Can be expensive

• Filtering: Ensure that only legitimate connections can initiate
handshake
• Can be effective if packets are not spoofed (e.g., by only allowing

known source)
• Same drawbacks as network-level DoS prevention

• How about not storing any state during handshake?
• SYN cookies (next slide)

31CSED415 – Spring 2025

SYN cookies

• Workflow
client server

SYN (seq: x)

SYN (seq: C) + ACK (x+1)

ACK (seq: C+1)

Established

Do not store anything
Generate cookie C from t and h
- t: current time
- h: hash(ip_svr || port_svr || ip_cli || port_cli)
e.g., C = encode(t, h)

Retrieve C = seqnum – 1 and decode it
- Check time t against current time
- Check ip and port of client
If legitimate, then store client states

Instead of
randomly

generated y

32CSED415 – Spring 2025

SYN cookies

• Observation
• Attacker no longer has

asymmetric advantage
• Must send SYN,

receive and parse resp,
and then send ACK

client server

Established

Do not store anything
Generate cookie C from t and h
- t: current time
- h: hash(ip_svr || port_svr || ip_cli || port_cli)
e.g., C = encode(t, h)

Retrieve C = seqnum – 1 and decode it
- Check time t against current time
- Check ip and port of client
If legitimate, then store client states

SYN (seq: x)

SYN (seq: C) + ACK (x+1)

ACK (seq: C+1)

33CSED415 – Spring 2025

DoS Prevention Case Study:
CSED415

34CSED415 – Spring 2025

CSED415 lab server

• Single-server, single-user

server

csed415-lab05

csed415-lab05 csed415-lab05

csed415-lab05

SSH

SSH SSH

SSH

35CSED415 – Spring 2025

CSED415 lab server

• Single-server, single-user, malicious students are behind!

server

csed415-lab05

csed415-lab05 csed415-lab05

csed415-lab05

SSH

SSH SSH

SSH

I wanna f-bomb
the server!

All 16 CPU
cores are mine!

96 GB of RAM?
I shall malloc!

500GB SSD?
I’ll fill it up with
some garbage!

36CSED415 – Spring 2025

CSED415 lab server

• Our mitigation strategy:
• rlimit and control groups (cgroup) inside a sandbox (nsjail)

csed415-lab05

SSH login

server

sshd run nsjail instead of /bin/sh

RLIMIT_FSIZE
RLIMIT_NOFILE
cgroup_mem_max
cgroup_pids_max

cgroup_cpu_ms_per_sec
fs_mounts

37CSED415 – Spring 2025

CSED415 lab server

• Try:
• /* fbomb.c */ while (1) { fork(); }
• /* mbomb.c */ while (1) { malloc(0x10000000); }
• $ fallocate -l 100G file
• $ sha1sum /dev/zero | sha1sum /dev/zero | sha1sum
/dev/zero | sha1sum /dev/zero | sha1sum /dev/zero |
sha1sum /dev/zero

38CSED415 – Spring 2025

Firewalls

39CSED415 – Spring 2025

Motivation: Scalable defenses

• Goal: Protect an entire network rather than individual
machines against external attacks
• e.g., a company network with many servers and desktops

• Attack surface is very large
• More network services == more risk

• ssh, ftp, http, printer, …
• More network-connected machines == more risk

• Different environments (OS, software, …) where some may be vulnerable
• Different user behaviors (phishing, social engineering, …)

40CSED415 – Spring 2025

Firewalls and security policies

• Firewall idea: Interpose a single point of access in and out of
the network with a security monitor
• Any traffic must pass through the firewall

• Security policies control network access
• What traffic is allowed to enter the network (inbound policy)
• What traffic is allowed to exit the network (outbound policy)

FirewallInternet
(untrusted) Internal network

(trusted, protected)

41CSED415 – Spring 2025

Firewalls and security policies

• Security policies for a standard home network:
• Outbound: Allow all

• Users inside the home network can connect to any external service
• Inbound: Allow some

• Allow inbound traffic in response to an outbound connection
• Allow inbound traffic to certain trusted services (e.g., SSH)
• Deny all other inbound traffic

Home network

Allow outbound traffic

Allow trusted inbound traffic

Deny others FirewallInternet
(untrusted)

42CSED415 – Spring 2025

Firewalls and security policies

• Possible default security policies
• Default-allow: Allow all traffic, but deny blacklisted traffic

• When problems arise, add them to the blacklist
• Default-deny: Deny all traffic, but allow whitelisted traffic

• When need be, e.g., when users complain, add them to the whitelist

• Which policy is better?
• Default-allow is more flexible, but flaws are catastrophic
• Default-deny is more conservative, but less prone to flaws
• Considering the “fail-safe defaults” principle, default-deny is generally

deemed more secure

43CSED415 – Spring 2025

Two types of firewalls

• Stateless firewall
• Stateful firewall

44CSED415 – Spring 2025

Stateless firewall

• Implemented as stateless packet filters
• Inspect each incoming and outgoing network packet
• All decision is made using only the information in the packet itself

• Source IP, destination IP, source port, destination port, and protocol
• Do not consider communication history

• Example:
• No inbound connection to low ports except

• 20, 21 for FTP / 23 for Telnet / 25 for SMTP / 80 for HTTP

45CSED415 – Spring 2025

Stateless firewall

• Stateless packet filtering examples
• Allow inbound from some ports

• Allow port 20, 21 for FTP (if running file server)
• Allow port 22 for SSH (if running secure shell server)
• Allow 23 for Telnet
• Allow 25 for SMTP (if running mail server)
• Allow 80 and 443 for HTTP, HTTPS (if running web server)

• Allow inbound from src IP 8.8.8.8
• Google’s DNS

• Deny all other inbound IP and ports

46CSED415 – Spring 2025

Stateless firewall

• Applying simple packet filter to the home network example
• Allow all outbound
• Allow inbound traffic to certain trusted services (e.g., SSH)
• Allow inbound traffic in response to an outbound connection
• Deny all other inbound traffic

Issue: How do we know if inbound traffic is in response to
an outbound connection without keeping track of states?

Using portnum

Allow all

Deny all

47CSED415 – Spring 2025

Stateless firewall

• Example: Temporary P2P connection with strict policy
Speaker

216.32.42.123:3737

Listener app
177.231.32.12:4949

Hey, let’s establish
connection

Firewall

allow all
outbound

Hey, let’s establish
connection

deny all
inbound
except
specific

ports

Hey, my key is
1q2w3e4r

Need to add rules, e.g., allow inbound from ports > 1024

48CSED415 – Spring 2025

Stateless firewall

• Example: Temporary P2P connection with relieved policy
Speaker

216.32.42.123:3737

Hey, let’s establish
connection

Firewall

allow all
outbound

Hey, let’s establish
connection

Hey, my key is
1q2w3e4r

Problem: Anyone can spam attack payloads

allow
inbound

from
port > 1024

Hey, my key is
1q2w3e4r

SYN flooding
SYN flooding

Listener app
177.231.32.12:4949

Attacker
141.223.181.22:1337

49CSED415 – Spring 2025

Stateful firewall

• Solution: Store and use full context (state) of connections
• Create a directory of outbound connections
• Allow packets from the destination of the recorded outbound

connections
• Use connection information along with strict stateless rules

Speaker
216.32.42.123:3737

Hey 177.231.32.12:4949
let’s establish connection Conn: 216.32.42.123:3737->177.231.32.12:4949

Allow inbound traffic related to this connection

50CSED415 – Spring 2025

Stateless vs Stateful firewalls

• Stateless
• Fast and scalable to large volumes of traffic
• Cheaper than stateful firewalls
• Less secure

• Stateful
• More secure and versatile

• Don’t need to allow a range of ports
• Dynamically configured

• Slower and more expensive than stateless firewalls

51CSED415 – Spring 2025

Firewall pros and cons

• Pros
• Centralized management of security policies (single point of control)
• Transparent operation to end users
• Mitigates security vulnerabilities

• Cons
• Reduced network connectivity
• Vulnerable to insider attacks

• Employees can be bribed or threatened
• Untrusted devices are brought into the network (e.g., employee laptops)

52CSED415 – Spring 2025

Alternative for firewalls

• Virtual private network (VPN)
• A set of protocols that allows direct access to an internal network

from external entities
• VPN server authenticates user (VPN client)
• Provide encrypted VPN tunnel

• Only authenticated clients can send traffic via the tunnel
• VPN server routes the traffic to individual services

53CSED415 – Spring 2025

VPN for perimeter security

• VPN workflow
VPN client VPN server

Internal network
(trusted, protected)

Authentication request

Authenticated

Encrypted tunnel

Further requests

Unauthenticated traffic

(e.g., vpn.postech.ac.kr)

54CSED415 – Spring 2025

Summary

• Availability: Making sure users are able to use a service
• DoS: Attack availability of services
• Application-level DoS
• Network-level DoS
• Stateful DoS
• Overprovisioning can mitigate DoS but it is very expensive

• Firewalls: Perimeter security to defend a network
• Utilize stateless and/or stateful packet filters

55CSED415 – Spring 2025

Questions?

