Lec 25: Fuzzing

CSED415: Computer Security
Spring 2025

Seulbae Kim
POSTECH

Administrivia
* Lab O5 is due by the end of Friday, May 23

* Attend office hours for help!
* TA: Mondays and Thursdays 7-8 PM
* Prof. Thursdays 1-2 PM

CSEDA415 — Spring 2025 2

Administrivia
* Project presentations — Next week

* Each team: 15-minute presentation + 5-minute Q&A (20 minutes total)
* Three teams will present on Tue, May 27
* The other three teams will present on Thu, May 29

* Presentation must include a demonstration (live or recorded)

* All teams MUST submit their slides, code and/or binary, and report
by May 26
* Check PLMS assignment for details

CSEDA415 — Spring 2025 3

Administrivia

rPOSTRPCH

* Final exam:
 Time: Thursday, June 5, 2:00-3:15 PM (75 minutes)
* Location: Classroom (Science Building Il, Room #106)

e Format: Closed book, closed notes, no electronic devices allowed

* Allowed: One-page (US letter- or Ad-sized) double-sided handwritten cheat
sheet

e Structure: 6 main questions (each may have sub-questions)
e Scope: Lectures 15-26, Labs 03-05

CSEDA415 — Spring 2025 4

Program Analysis for
Bug Finding

CCCCCCC — Spring 2025 rPOSTEREPLCH

Motivation

rPOSTERCH

* There are many bugs in the wild

* Some bugs are security vulnerabilities that are exploitable by
attackers

Bug

Vulnerability

If we eliminate , We can prevent attacks

CSEDA415 — Spring 2025 6

Motivation

rPOSTERCH

* CVE (Common Vulnerability Enumeration)
 CVE is an indentifier assigned to publicly disclosed vulnerabilities

* # vulnerabilities keeps increasing - The attack surface is growing!

45000 # CVE per year

40000
35000
30000 Increasing!
25000
20000

15000
10000 ||
5000

SRR RN

T ANM SN ONWO O

o)

1999 |
2000 =
2001 =
2002 =
2003 =«
2004 =
2005 ==
2006 ===
2007 =
2008 ==
2009 mmm

CSEDA415 — Spring 2025

Key question

rPOSTERCH

* Can we build a system that automatically finds bugs?

4)
Bug-finding Y
1010 X system ﬂ
BIN _ Y, Bugs

Program
(Source or binary)

_//%’///
sl|lo
\ 4

g

CSEDA415 — Spring 2025

Informal proof

rPOSTERCH

* Define a function 1s_bugqgy
* Input: A program
* Qutput: 1 if the program has at least one bug, 0 if not

def i1s_buggy(prog):
test prog and return 1 or 0

CSEDA415 — Spring 2025 9

Informal proof

rPOSTERCH

» Write a program buggy_prog

buggy_prog.py

1t 1s_buggy("buggy_prog.py"):
return # do nothing

else:
corrupt_memory()
launch_root shell()
return

Self-contradictory! (Similar to the case of anti-virus)

CSEDA415 — Spring 2025 10

Back to the question..

rPOSTERCH

* Can we build a system that automatically finds bugs?
* A a perfect bug-finding system cannot exist

* Therefore, we use best-effort approaches for partial bug
identification
* Bounded model checking

* Static analysis
* Dynamic analysis
* etc.

CSEDA415 — Spring 2025 11

Definition of “partial”

rPOSTERCH

* Soundness vs Completeness

* An algorithm is sound if every result it produces is in fact true
* Every reported bug is real if algorithm is sound

* Soundness guarantees that there is no false positive
* A sound algorithm never misclassifies a non-bug as bug

All existing bugs (i.e., truth)

What algorithm
identifies as bugs

CSEDA415 — Spring 2025 12

Definition of “partia

I”

* Soundness vs Completeness

* An algorithm is complete if it can derive all truths
* BEvery real bug is reported if algorithm is complete

 Completeness guarantees that there is no false negative
* A complete algorithm never misclassifies a bug as non-bug

CSEDA415 — Spring 2025

-

What algorithm identifies as bugs

All existing bugs (i.e., truth)

2N

rPOSTERCH

13

Perfect analysis

rPOSTERCH

* Soundness vs Completeness

* Perfect algorithm is sound and complete
* Very challenging to achieve in practice

All existing bugs (i.e., truth)

What algorithm identifies as bugs

CSEDA415 — Spring 2025 14

Metrics to evaluate a bug finding algorithm

* Precision, recall, and accuracy

U (all code)

|ldentified bugs (claim)

TN

FN

Actual bugs (truth)

CSEDA415 — Spring 2025

rPOSTERCH

Precision: Quality of identification
=TP /(TP + FP)

Recall: Quantity of identification
=TP/(FN + TP)

Accuracy

=(TP+TN)/ U

15

Static vs Dynamic analysis

rPOSTERCH

* Static analysis: * Dynamic analysis:
* Examine program (binary or * Monitor program’s runtime
code) without running it behavior during execution
* Examples: * Examples:
 Decompilation * Fuzzing (Today'’s topic)
* Pointer analysis * Concolic execution

* Symbolic execution (Next topic)

CSEDA415 — Spring 2025 16

CSEDA415 — Spring 2025

Fuzzing

rPoOsSTERECH

17

Fuzzing (or fuzz-testing)

rPOSTERCH

* Definition
* Automated testing technique that feeds invalid/unexpected/random
inputs to a program under test (PUT)

* During the process, the program is monitored for anomalous
behaviors
* Crash, hang, memory leak, etc.

* Goal is to uncover as many bugs (and vulnerabilities) as possible

CSEDA415 — Spring 2025 18

Origin of fuzzing

rPOSTERCH

* Experience of Barton Miller in 1990
* He was logged on to his workstation through a modem (dial-up line)
* Due to a storm there were a lot of line noise (i.e., line was fuzzy)
* The noise kept generating spurious characters on the line
* Programs on the workstation kept crashing due to the junk characters
* He coined the term “fuzzing” from the experience

CSEDA415 — Spring 2025 19

Early days of fuzzing

rPOSTERCH

* Paper: Barton Miller, et al.,
“An Empirical Study of the Reliability of Unix Utilities”,
Communications of the ACM, 1990

Fuzzing

_______________________________ |

|

' 0100 OK (no error) :
I UNIX I
: 1011 program '
| 1110 ——] :
: 7 rash (buggy) ;
: Randomly Execution result :
I I

generated input

CSEDA415 — Spring 2025 20

Early days of fuzzing

rPOSTERCH

* Effectiveness
* Tested 90 Unix utility programs
* awk, cat, cc, diff, emacs, grep, ...
* The fuzzer crashed 36 utilities!

* Due to various bugs including unbounded pointer/array accesses, overflows,
race conditions, ...

 Randomly generated inputs were strikingly effective in triggering the bugs
within poorly-written Unix programs of 1980s

CSEDA415 — Spring 2025 21

Experiment

rPOSTERCH

* Let’s put Miller’s fuzzer to the test with a simple program
* Target program reads 4 bytes from stdin #include <signal.h>

#include <stdio.h>
#include <stdlib.h>

* [fthe four bytes are Oxde Oxad Oxbe Oxef, #include <unistd.h-
it crashes by raising segmentation fault signal i e L,

raise(SIGSEGV);
}

int main(void) {
setvbuf(stdout, NULL, _IONBF, 0);
setvbuf(stdin, NULL, _IONBF, 0);

char in[16];
FILE *xfp = fopen("/dev/stdin", "rb");
fread(&in, 4, 1, fp);
if (in[0] == ')
if (in[1] =" ")
if (in[2] =" ")
if (in[3] == " ")
bug();
fclose(fp);
return 0;

}

CSEDA415 — Spring 2025 ta rget.C 22

Experiment

rPOSTERCH

* Let’s put Miller’s fuzzer to the test with a simple program
* Fuzzer: Brute-force 4-byte random inputs until the target crashes
e Let's check the result at the end of today’s lecture

import os
import subprocess as sp

if __name__ == "_ main__":
trials = 0
while True:

_input = os.urandom(4)

p = sp.Popen(["./target"], stdout=sp.PIPE, stdin=sp.PIPE, stderr=sp.PIPE)
out, err = p.communicate(input=_1input) # send _input to stdin and read stdout
if b"bug!" in out:

print(f"found in {trials} trials")

print(f"Test input: {_input}")

exit(0)

print(trials)
trials += 1

fuzz.py

CSEDA415 — Spring 2025 23

Interpretation of Miller’s success

rPOSTERCH

* Fuzzing is simple, yet effective. Why?

* Recall the software bugs we covered in this course

* Many attacks originate from unsanitized user inputs
* e.qg., buffer overflow, control flow hijacking, authentication bypass, DoS, SQL injection, ...

* Fuzzing is a way to “simulate” hostile input with minimal effort

CSEDA415 — Spring 2025 24

Is fuzzing still effective against modern software?

* Modern software have become very large and complex
 Chromium browser codebase has 28 million lines of code (LoC)

* Linux kernel comprises over 27 MLoC
» FFmpeg has 1.4 MLoC L T

- Manual review of every code path is impractical = —
* Imagine manually analyzing a program with "
the control flow graph (CFG) displayed on the right -7l & <fess
* Time consuming, error-prone, and hardly scalable i o 5;‘&.”;5, &

s fuzzing applicable to large and complex programs?

CSEDA415 — Spring 2025 25

Evolution of fuzzing

rPOSTERCH

* Types of fuzzing
* Blackbox, greybox, and whitebox fuzzing
* Mutation-based vs generation-based fuzzing

CSEDA415 — Spring 2025 26

Greybox Fuzzing

CCCCCCC — Spring 2025 rPOSTEREPLCH

Overview of Black, grey, and whitebox fuzzing

%S 25

< L&
¢’ NZ

Generates random inputs * Relies on “lightweight” .

instrumentation of the program

Fuzzer has no knowledge of

;) under test
program’s code and internal
states * Fuzzer has some knowledge of
The approach of Miller et al. the program Internals during
fuzzing
Pros: « Generates semi-random inputs .
* Extremely fast based on the knowledge
* Easytouse T Pros: Best of both worlds /.
* Scalable « Scalable
Cons: * Relatively fast
* Poor effectiveness * Decent code coverage

* Poor code coverage

CSEDA415 — Spring 2025

= I
S5

Fuzzer has full knowledge of
the program internals and
code

Solves path constraints to
generate concrete inputs for
all program branches

Pros:
* High code coverage

Cons:
« Complex
 Slow
* Not scalable

28

Breakdown of fuzzing efficiency
* A typing monkey problem

* Given infinite amount of time, can a monkey, hitting keys at random
on a keyboard, type a full sentence?

\

It was a bright cold day in
April, and the clocks were
striking thirteen.

)

The possibility is non-zero; the monkey will “almost surely” type any given sentence

However, it will take astronomical amount of time

CSED415 — Spring 2025 29

Breakdown of fuzzing efficiency

rPOSTECH
* Blackbox fuzzing
Random mutation]
~ R
—| Fuzzer |[— — <> — crash
0000 0000
- Y, U
Seed Test input Target system
Target X = input() Seed x = "LIFE"
if x[@] == 'H': Testinput x = "LIFO" x = "5IFE" x = "LOVE"
if x[1] == 'A":
if x[2] == 'R': x = "HEFE" x = "DOVE" x = "LIFF"
if x[3] == 'D': 1
crash() 9 P(CraSh) — 2?

CSED415 — Spring 2025 30

Recent breakthrough

rPOSTERCH

* Greybox fuzzing with code coverage feedback
Feedback-guided]

mutation
4)
0000 — Fuzzer —_— § 0010
0000 0100
_ J

— m — crash

Seed Test input Target system

4)
Feedback ‘&L bug

\Coverage map

CSEDA415 — Spring 2025 3

Breakdown of fuzzing efficiency

rPOSTERCH

* A typing monkey problem (Greybox edition)
 Keep the typed letters that are correct
* Restart typing from the next position

\

It was a bright cold day in
April, and the clocks were
striking thirteen.)

J
Wait for the monkey to randomly type "k"

Move the cursor to the next position when "k" is pressed

CSED415 — Spring 2025 22

Breakdown of fuzzing efficiency

rPOSTERCH

* A typing monkey problem (Greybox edition)
 Keep the typed letters that are correct
* Restart typing from the next position

\

It was a bright cold day in
April, and the clocks were
striking thirteen.

J
Repeat for the rest of the sentence

The possibility is dramatically increased

CSED415 — Spring 2025 332

Coverage feedback leads to better exploration

rPOSTERCH

Target y - input() Seed X = "LIFE"

Testinput x = "LIFO" x = "SIFE" x = "LOVE"

if x = "HEFE" New branch.
/ l Interesting!
% x[s New seed x = "HEFE"

it x[3] = ‘e Testinput x = "LEFE" X

crash() v
New seed x = "HAVE"

"HAVE" New branch.
| Interesting!

QP(CI‘aSh):218><%=i>i

Get correct byte ‘

Select right position
CSEDA415 — Spring 2025 34

How to track code coverage?

rPOSTERCH

* Instrumentation: Modifying a program to enable analysis

* For code coverage tracking, we want to record which branches of a
program has been executed

* We can instrument basic blocks
* Basic block (BB): A sequence of code representing one branch of a software

CSEDA415 — Spring 2025 35

How to track code coverage?

rPOSTERCH

* Control flow graph (CFG) of the “HARD” example
e Consists of six basic blocks

BB#1 | mov x, input
cmp x[0], 'H'
jne BB#6
BB#2
cmp x[1], 'A’
jne BB#6
BB#3
cmp x[2], 'R
jne BB#6
BB#4
cmp x[3], 'D'
jne BB#6
BB#5 BB#6
call crash() return 0

CSEDA415 — Spring 2025 36

How to track code coverage?

rPOSTERCH

* Instrumentation for code coverage tracking

BB#1 _

blk_id: Oxaa | €att get_cov(blk_id) def get_cov(blk id):
jddior By global prev_blk_id

jne BB#6 record(prev_blk_id, blk id)

BB#2]

call get_cov(blk_1id)
cmp x[1], 'A’
jne BB#6

blk_1id: 0xbb

BB#3 vy

call get_cov(blk_1id)
cmp x[2], 'R
jne BB#6

blk _id: 0Oxcc

BB#4 ——

blk_id: 0xdd | (311 get_cov(blk_id)
cmp X[3]’ ‘D’
jne BB#6

blk_td: Oxee == : blk_id: Oxff —

call get_cov(blk_1id) call get_cov(blk_1id)
call crash() return 0

CSEDA415 — Spring 2025 37

How to track code coverage?

* Instrumentation for code coverage tracking

CSEDA415 — Spring 2025

blk_

blk_1id: 0xdd

blk _id: Oxee

blk_t1

B

BB#1
d: Oxaa

jne BB#6

call get_cov(blk_1id)
mov X, input
cmp x[0], 'H'

B#2]

blk_1id: 0xbb

call get_cov(blk_1id)
cmp x[1], 'A’
jne BB#6

BB#3

——

id: Oxcc
call get_c

cmp x[2],
jne BB#6

ov(blk_id)
IRI

BB#4

——

call get_cov(blk_1id)
cmp x[3], 'D'
jne BB#6

BB#5 !

call get_cov(blk_1id)
call crash()

blk_id: Oxff

BB#6

rPOSTERCH

def get_cov(blk_1id):
global prev_blk_id
record(prev_blk_1id, blk id)

Input: HASH

Coverage map:
(Oxaa,0xbb)
(Oxbb,0xcc)
(Oxcc,0xff)

Input: HAND

Coverage map:
(Oxaa,0xbb)
(Oxbb,0xcc)
(Oxcc,0xff)

Input: HANK

Coverage map:
(Oxaa,0xbb)
(Oxbb,0xcc)
(Oxcc,0xff)

Input: HARM

Coverage map:
(Oxaa,0xbb)
(Oxbb,0xcc)
(Oxcc,0xdd)
(Oxdd,0Oxff)

New coverage found!

call get_cov(blk_1id)
return 0

38

Feedback-driven greybox fuzzing is effective

rPOSTERCH

a#C O MPI1LER
INFRASTRUCTURE

))
/tuple

0 (0.00%)

american fuzzy lop 0.47b (readpng)
timin r ts

ays, O hrs, min, sec 0

ays, O hrs, min, sec

zet _
rs, 1 min, sec ///’g
ss map coverage
38 (19.49%) 1217 (7.43%
2.55 bits
indings i

dept!
128 (65.64%)
85 (43.59%)
0 (0 unique)

9

2306/sec

rat§§;l%?§1?56/14.4k, 6/14.4k
02808, SLTBL 0 o : , : ,
i gk Tk libFuzzer - a library for coverage-guided fuzz testing.
2876 B/931 (61.45% gain

AFL libFuzzer OSS-Fuzz

Discovered millions of crashes in complex software systems

CSEDA415 — Spring 2025 39

Test Input Generation

CCCCCCC — Spring 2025 rPOSTEREPLCH

Mutation- vs Generation-based fuzzing

rPOSTERCH

* Motivation: Randomly generated inputs are likely rejected by
the program under test

* .9, When fuzzing a video player application, it is very unlikely that
a fuzzer generates a properly formatted mp4 file at random

* Two methods for better input generation

* Mutation: Mutate a given seed to generate test inputs
e Seed: A legitimate mp4 file

* Generation: Generate test inputs from an input model
 Model: Specification of mp4 file format

CSEDA415 — Spring 2025 41

Mutation

rPOSTERCH

* Frequently used mutation operators
* Bit-flipping: Flip a randomly selected bit
* €.g., Oxdead (0b1101 1110 1010 1101) - Oxdeaf (0b1101 1110 1010 1111)
* Arithmetic operation: Select a byte and add/subtract a value
 Randomization: Select a byte and randomize the value
* Insertion and deletion: Add or remove bytes

* Splicing: Crossover two test inputs
* e.g., First half of input #1 + second half of input #2

CSEDA415 — Spring 2025 42

Generation

* Generate inputs that the program under test would accept

* A model describes the correct format

* ©.g., a grammar specifying the input format
* PNG input has header and size fields

* The header field must have the “magic number”
of PNG in order for the input to be accepted

by a PNG parser

CSEDA415 — Spring 2025

Header

Size(12)

content
data

Size(688)

nnnnnnn

— x89PNGx0Dx0Ax1AX0A

>x00x00x00x0C

IHDR <—

——

12 bytes

4 bytes «—t——

>x00x00x02xB0

IDAT <—

_t

688 bytes

—1— 4 bytes

x00x00x00x00+

oter
 —— IEND

XAEx42x60x82<4——

Size(0)

CRC
data

PNG format

rPOSTERCH

43

Bug Oracles

CCCCCCC — Spring 2025 rPOSTEREPLCH

Mutation-based greybox fuzzing overview

rPOSTERCH

What if the program is buggy
but does not crash?

~N
()

—>| Fuzzer |— — l< >I crash

0000 L) 9100 .

Seed t Test input Target system J

Feedback < bug

Coverage map

CSEDA415 — Spring 2025 45

A need for bug oracles

rPOSTERCH

* What types of anomalous behavior do we want to find?
* Crashes, but not all vulnerabilities lead to crashes (e.qg., Lab O1)

* Memory corruption: e.g., Use-After-Free (UAF) vulnerabilities

* Hang: Program does not finish within a timeout period

* Memory leaks, race conditions, specification violation, ...

* A bug oracle detects any interesting behavior
occurred during the execution of a program
with the test input

CSEDA415 — Spring 2025 46

Bug oracles in practice

rPOSTERCH

* AddressSanitizer (ASan)
 Detects buffer overflows and use-after-free

* ThreadSanitizer (TSan)
 Detects data races

* MemorySanitizer (MSan)
* Detects uses of uninitialized memory

CSEDA415 — Spring 2025 47

Address sanitizer

rPOSTERCH

* Implemented as compiler module (available in clang and gcc)

* Instruments all load and store instructions
* Inserts redzones around each stack and global variable

e redzonel
buf » | buf
ebp redzone2
ret ebp

ret

Original program Sanitized program

CSEDA415 — Spring 2025 48

Address sanitizer

rPOSTERCH

e Runtime module checks whether redzones are touched when
buf is read or something is written to buf

redzonel Underflow contaminates redzonef
— T ASan reports buffer overflow error
but > | buf
eb redzone? Overflow contaminates redzone?2
P ASan reports buffer overflow error
ret ebp
ret
Original program Sanitized program

CSEDA415 — Spring 2025 49

Address sanitizer in action

rPOSTERCH

 Without ASan

// oob.c

#include <stdio.h>

int numbers[] =9{ 1, 2, 3 };

int main() { /* classic out of bounds read error. */
printf("The 4th number in my array is: %i\n", numbers[4]);

$ gcc oob.c -0 oob

$./o00b
The 4th number in my array is: 0

The bug is missed

CSEDA415 — Spring 2025 50

Address sanitizer in action

* With ASan

CSEDA415 — Spr

// oob.c

#include <stdio.h>

int numbers[] =9{ 1, 2, 3 };

int main() { /* classic out of bounds read error. */
printf("The 4th number in my array is: %i\n", numbers[4]);

$ gcc oob.c -fsanitize=address -o oob_asan

$./00b_asan

==365994==ERROR: AddressSanitizer: global-buffer-overflow on address 0x55aceaed5030 at pc 0x55aceaed2223 bp
Ox7ffe8cfc2c20 sp Ox7ffe8cfc2cl0
READ of size 4 at 0x55aceaed5030 thread TO

#0 Ox55aceaed2222 in main (/home/seulbae/test/asan/oob_asan+0x1222)

#1 Ox7fabfafled8f in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58

#2 Ox7fa6faflee3f in __libc_start_main_impl ../csu/libc-start.c:392

#3 Ox55aceaed2124 in _start (/home/seulbae/test/asan/oob_asan+0x1124)

0x55aceaed5030 is located 4 bytes to the right of global variable 'numbers' defined in ‘oob.c:8:5' (0x55aceaed5020)
of size 12
SUMMARY: AddressSanitizer: global-buffer-overflow (/home/seulbae/test/asan/oob_asan+0x1222) in main
Shadow bytes around the buggy address:
0x0ab61d5d29f0: 00 00 00 OO0 00 00 00 OO0 00 00 00 OO0 00 00 00 00
=>0x0ab61d5d2a00: 00 00 00 00 00 04[f9]f9 f9 f9 f9 f9 00 00 00 00
0x0ab61d5d2al0: f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9

rPOSTERCH

51

Final picture

rPOSTERCH

A coverage-based mutational greybox fuzzer

D-B-B-E-O #
0000 0100 - —]":

Seed Input Test Instrumented Bug Bugs
mutator input program oracle

"«
¢
< ACoverage
& bug monitor

Coverage map

CSEDA415 — Spring 2025 52

Let’s check the fuzzing results (from page 23)

rPOSTERCH

* How many trials were required to find the bug through
blackbox fuzzing?
 Random mutation, no coverage feedback

* Crash: Random 4 bytes being identical to "\xde\xad\xbe\xef"
* Theoretically requires 234 =~ 4.2 billion trials
* Experimentally: (see terminal)

CSEDA415 — Spring 2025 53

vs AFL

rPOSTERCH

* AFL: The most widely used coverage-guided mutation-based
fuzzer
* Instrumentation for code coverage using AFL’s custom complier

$ afl-cc target.c -00 -o target_afl

* Prepare a seed input

$ rm -rf in out
$ mkdir in out
$ echo -ne "\xff\xff\xff\xff" > in/seed

e Run fuzzer

$ afl-fuzz -1 in -0 out -- ./target_afl

CSEDA415 — Spring 2025 54

Questions

* Is fuzzing sound? (no false positives?)

* |s fuzzing complete? (no missed bugs?)

All existing bugs (i.e., truth)

What sound
algorithm
identifies as bugs

- Fuzzer can have FP if its oracles are unsound

rPOSTERCH

All existing bugs (i.e., truth)

_

/What complete algorithm identifies as bugs\

J

- Fuzzer can miss bugs as it
partially explores target program

Conclusion: Fuzzing is neither sound nor complete, but it is practical and scalable

CSEDA415 — Spring 2025

55

Questions?

CCCCCCC — Spring 2025 rPOSTEREPLCH

