
Seulbae Kim

CSED415: Computer Security
Spring 2025

Lec 25: Fuzzing

2CSED415 – Spring 2025

Administrivia

• Lab 05 is due by the end of Friday, May 23
• Attend office hours for help!

• TA: Mondays and Thursdays 7-8 PM
• Prof: Thursdays 1-2 PM

3CSED415 – Spring 2025

Administrivia

• Project presentations – Next week
• Each team: 15-minute presentation + 5-minute Q&A (20 minutes total)

• Three teams will present on Tue, May 27
• The other three teams will present on Thu, May 29

• Presentation must include a demonstration (Iive or recorded)
• All teams MUST submit their slides, code and/or binary, and report

by May 26
• Check PLMS assignment for details

4CSED415 – Spring 2025

Administrivia

• Final exam:
• Time: Thursday, June 5, 2:00-3:15 PM (75 minutes)
• Location: Classroom (Science Building II, Room #106)
• Format: Closed book, closed notes, no electronic devices allowed

• Allowed: One-page (US letter- or A4-sized) double-sided handwritten cheat
sheet

• Structure: 6 main questions (each may have sub-questions)
• Scope: Lectures 15-26, Labs 03-05

5CSED415 – Spring 2025

Program Analysis for
Bug Finding

6CSED415 – Spring 2025

Motivation

• There are many bugs in the wild
• Some bugs are security vulnerabilities that are exploitable by

attackers

Bug

Vulnerability

If we eliminate bugs, we can prevent attacks

7CSED415 – Spring 2025

Motivation

• CVE (Common Vulnerability Enumeration)
• CVE is an indentifier assigned to publicly disclosed vulnerabilities
• # vulnerabilities keeps increasing - The attack surface is growing!

0
5000

10000
15000

20000
25000
30000
35000
40000
45000

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

CVE per year

Increasing!

8CSED415 – Spring 2025

Key question

• Can we build a system that automatically finds bugs?

Bug-finding
system

Program
(Source or binary)

Bugs

9CSED415 – Spring 2025

Informal proof

• Define a function is_buggy
• Input: A program
• Output: 1 if the program has at least one bug, 0 if not

def is_buggy(prog):
 # test prog and return 1 or 0

10CSED415 – Spring 2025

Informal proof

• Write a program buggy_prog

Self-contradictory! (Similar to the case of anti-virus)

buggy_prog.py

if is_buggy("buggy_prog.py"):
 return # do nothing

else:
 corrupt_memory()
 launch_root_shell()
 return

11CSED415 – Spring 2025

Back to the question..

• Can we build a system that automatically finds bugs?
• A a perfect bug-finding system cannot exist

• Therefore, we use best-effort approaches for partial bug
identification
• Bounded model checking
• Static analysis
• Dynamic analysis
• etc.

12CSED415 – Spring 2025

Definition of “partial”

• Soundness vs Completeness
• An algorithm is sound if every result it produces is in fact true

• Every reported bug is real if algorithm is sound
• Soundness guarantees that there is no false positive

• A sound algorithm never misclassifies a non-bug as bug

All existing bugs (i.e., truth)

What algorithm
identifies as bugs

13CSED415 – Spring 2025

Definition of “partial”

• Soundness vs Completeness
• An algorithm is complete if it can derive all truths

• Every real bug is reported if algorithm is complete
• Completeness guarantees that there is no false negative

• A complete algorithm never misclassifies a bug as non-bug

What algorithm identifies as bugs

All existing bugs (i.e., truth)

14CSED415 – Spring 2025

Perfect analysis

• Soundness vs Completeness
• Perfect algorithm is sound and complete

• Very challenging to achieve in practice

All existing bugs (i.e., truth)
=

What algorithm identifies as bugs

15CSED415 – Spring 2025

Metrics to evaluate a bug finding algorithm

• Precision, recall, and accuracy

U (all code)

Actual bugs (truth)

Identified bugs (claim)

FP

TP FN

TN

• Precision: Quality of identification
= TP / (TP + FP)

• Recall: Quantity of identification
= TP / (FN + TP)

• Accuracy
= (TP + TN) / U

16CSED415 – Spring 2025

Static vs Dynamic analysis

• Static analysis:
• Examine program (binary or

code) without running it
• Examples:

• Decompilation
• Pointer analysis
• Symbolic execution (Next topic)

• Dynamic analysis:
• Monitor program’s runtime

behavior during execution
• Examples:

• Fuzzing (Today’s topic)
• Concolic execution

17CSED415 – Spring 2025

Fuzzing

18CSED415 – Spring 2025

Fuzzing (or fuzz-testing)

• Definition
• Automated testing technique that feeds invalid/unexpected/random

inputs to a program under test (PUT)
• During the process, the program is monitored for anomalous

behaviors
• Crash, hang, memory leak, etc.

• Goal is to uncover as many bugs (and vulnerabilities) as possible

19CSED415 – Spring 2025

Origin of fuzzing

• Experience of Barton Miller in 1990
• He was logged on to his workstation through a modem (dial-up line)
• Due to a storm there were a lot of line noise (i.e., line was fuzzy)
• The noise kept generating spurious characters on the line
• Programs on the workstation kept crashing due to the junk characters
• He coined the term “fuzzing” from the experience

20CSED415 – Spring 2025

Early days of fuzzing

• Paper: Barton Miller, et al.,
“An Empirical Study of the Reliability of Unix Utilities”,
Communications of the ACM, 1990

UNIX
program

0100
1011
1110

Randomly
generated input

OK (no error)

Crash (buggy)

Execution result

Fuzzing

21CSED415 – Spring 2025

Early days of fuzzing

• Effectiveness
• Tested 90 Unix utility programs

• awk, cat, cc, diff, emacs, grep, …
• The fuzzer crashed 36 utilities!

• Due to various bugs including unbounded pointer/array accesses, overflows,
race conditions, …
• Randomly generated inputs were strikingly effective in triggering the bugs

within poorly-written Unix programs of 1980s

22CSED415 – Spring 2025

Experiment

• Let’s put Miller’s fuzzer to the test with a simple program
• Target program reads 4 bytes from stdin
• If the four bytes are 0xde 0xad 0xbe 0xef,

it crashes by raising segmentation fault signal

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

void bug(void) {
 printf("bug!\n");
 raise(SIGSEGV);
}

int main(void) {
 setvbuf(stdout, NULL, _IONBF, 0);
 setvbuf(stdin, NULL, _IONBF, 0);

 char in[16];
 FILE *fp = fopen("/dev/stdin", "rb");
 fread(&in, 4, 1, fp);
 if (in[0] == '\xde')
 if (in[1] == '\xad')
 if (in[2] == '\xbe')
 if (in[3] == '\xef')
 bug();
 fclose(fp);
 return 0;
}

target.c

23CSED415 – Spring 2025

Experiment

• Let’s put Miller’s fuzzer to the test with a simple program
• Fuzzer: Brute-force 4-byte random inputs until the target crashes
• Let’s check the result at the end of today’s lecture

import os
import subprocess as sp

if __name__ == "__main__":
 trials = 0
 while True:
 _input = os.urandom(4)

 p = sp.Popen(["./target"], stdout=sp.PIPE, stdin=sp.PIPE, stderr=sp.PIPE)
 out, err = p.communicate(input=_input) # send _input to stdin and read stdout
 if b"bug!" in out:
 print(f"found in {trials} trials")
 print(f"Test input: {_input}")
 exit(0)

 print(trials)
 trials += 1

fuzz.py

24CSED415 – Spring 2025

Interpretation of Miller’s success

• Fuzzing is simple, yet effective. Why?
• Recall the software bugs we covered in this course

• Many attacks originate from unsanitized user inputs
• e.g., buffer overflow, control flow hijacking, authentication bypass, DoS, SQL injection, …

• Fuzzing is a way to “simulate” hostile input with minimal effort

25CSED415 – Spring 2025

Is fuzzing still effective against modern software?

• Modern software have become very large and complex
• Chromium browser codebase has 28 million lines of code (LoC)
• Linux kernel comprises over 27 MLoC
• FFmpeg has 1.4 MLoC

• Manual review of every code path is impractical
• Imagine manually analyzing a program with

the control flow graph (CFG) displayed on the right
• Time consuming, error-prone, and hardly scalable

Is fuzzing applicable to large and complex programs?

26CSED415 – Spring 2025

Evolution of fuzzing

• Types of fuzzing
• Blackbox, greybox, and whitebox fuzzing
• Mutation-based vs generation-based fuzzing

27CSED415 – Spring 2025

Greybox Fuzzing

28CSED415 – Spring 2025

Overview of Black, grey, and whitebox fuzzing

• Generates random inputs
• Fuzzer has no knowledge of

program’s code and internal
states

• The approach of Miller et al.
• Pros:

• Extremely fast
• Easy to use
• Scalable

• Cons:
• Poor effectiveness
• Poor code coverage

• Fuzzer has full knowledge of
the program internals and
code

• Solves path constraints to
generate concrete inputs for
all program branches

• Pros:
• High code coverage

• Cons:
• Complex
• Slow
• Not scalable

• Relies on “lightweight”
instrumentation of the program
under test

• Fuzzer has some knowledge of
the program internals during
fuzzing
• Generates semi-random inputs

based on the knowledge

• Pros:
• Scalable
• Relatively fast
• Decent code coverage

Best of both worlds

29CSED415 – Spring 2025

Breakdown of fuzzing efficiency

• A typing monkey problem
• Given infinite amount of time, can a monkey, hitting keys at random

on a keyboard, type a full sentence?

29

It was a bright cold day in
April, and the clocks were
striking thirteen.

The possibility is non-zero; the monkey will “almost surely” type any given sentence
However, it will take astronomical amount of time

30CSED415 – Spring 2025

Breakdown of fuzzing efficiency

30

Seed Target system

0000
0000

Fuzzer

Test input

0010
0000

crash

Seed x = "LIFE"

Test input x = "LIFO" x = "5IFE" x = "L0VE"

x = "HEFE" x = "DOVE" x = "LIFF"

x = input()

if x[0] == 'H':
 if x[1] == 'A':
 if x[2] == 'R':
 if x[3] == 'D':
 crash()

Target

à P crash = !
"!"

Random mutation

• Blackbox fuzzing

31CSED415 – Spring 2025

• Greybox fuzzing with code coverage feedback

Recent breakthrough

31

Seed Target system

0000
0000

Coverage map
Feedback

ß bug

Fuzzer

Test input

0010
0100

crash

Feedback-guided
mutation

32CSED415 – Spring 2025

Breakdown of fuzzing efficiency

• A typing monkey problem (Greybox edition)
• Keep the typed letters that are correct
• Restart typing from the next position

32

It was a bright cold day in
April, and the clocks were
striking thirteen.

Wait for the monkey to randomly type "k"
Move the cursor to the next position when "k" is pressed

33CSED415 – Spring 2025

Breakdown of fuzzing efficiency

• A typing monkey problem (Greybox edition)
• Keep the typed letters that are correct
• Restart typing from the next position

33

It was a bright cold day in
April, and the clocks were
striking thirteen.

Repeat for the rest of the sentence

The possibility is dramatically increased

34CSED415 – Spring 2025

Coverage feedback leads to better exploration

34

x = input()

if x[0] == 'H':

 if x[1] == 'A':

 if x[2] == 'R':

 if x[3] == 'D':

 crash()

Seed x = "LIFE"Target

Test input x = "5IFE" x = "L0VE"

x = "LEFE"

à P crash = !
"!
	× !

#
= !

""#
> !

"$%
Get correct byte

Select right position

x = "LIFO"

x = "HEFE" New branch.
Interesting!

x = "HAVE" New branch.
Interesting!

x = "HEFE"New seed

Test input

x = "HAVE"New seed...

35CSED415 – Spring 2025

How to track code coverage?

• Instrumentation: Modifying a program to enable analysis
• For code coverage tracking, we want to record which branches of a

program has been executed
• We can instrument basic blocks

• Basic block (BB): A sequence of code representing one branch of a software

36CSED415 – Spring 2025

How to track code coverage?

• Control flow graph (CFG) of the “HARD” example
• Consists of six basic blocks

mov x, input
cmp x[0], 'H'
jne BB#6

cmp x[1], 'A'
jne BB#6

cmp x[2], 'R'
jne BB#6

BB#1

cmp x[3], 'D'
jne BB#6

return 0call crash()

BB#2

BB#3

BB#4

BB#5 BB#6

37CSED415 – Spring 2025

How to track code coverage?

• Instrumentation for code coverage tracking
call get_cov(blk_id)
mov x, input
cmp x[0], 'H'
jne BB#6

call get_cov(blk_id)
cmp x[1], 'A'
jne BB#6

call get_cov(blk_id)
cmp x[2], 'R'
jne BB#6

BB#1

call get_cov(blk_id)
cmp x[3], 'D'
jne BB#6

call get_cov(blk_id)
return 0

call get_cov(blk_id)
call crash()

BB#2

BB#3

BB#4

BB#5 BB#6

blk_id: 0xaa

blk_id: 0xbb

blk_id: 0xcc

blk_id: 0xdd

blk_id: 0xee blk_id: 0xff

def get_cov(blk_id):
 global prev_blk_id
 record(prev_blk_id, blk_id)

38CSED415 – Spring 2025

How to track code coverage?

• Instrumentation for code coverage tracking
call get_cov(blk_id)
mov x, input
cmp x[0], 'H'
jne BB#6

call get_cov(blk_id)
cmp x[1], 'A'
jne BB#6

call get_cov(blk_id)
cmp x[2], 'R'
jne BB#6

BB#1

call get_cov(blk_id)
cmp x[3], 'D'
jne BB#6

call get_cov(blk_id)
return 0

call get_cov(blk_id)
call crash()

BB#2

BB#3

BB#4

BB#5 BB#6

blk_id: 0xaa

blk_id: 0xbb

blk_id: 0xcc

blk_id: 0xdd

blk_id: 0xee blk_id: 0xff

def get_cov(blk_id):
 global prev_blk_id
 record(prev_blk_id, blk_id)

Input: HASH
Coverage map:
 (0xaa,0xbb)
 (0xbb,0xcc)
 (0xcc,0xff)

Input: HANK
Coverage map:
 (0xaa,0xbb)
 (0xbb,0xcc)
 (0xcc,0xff)

Input: HAND
Coverage map:
 (0xaa,0xbb)
 (0xbb,0xcc)
 (0xcc,0xff)

Input: HARM
Coverage map:
 (0xaa,0xbb)
 (0xbb,0xcc)
 (0xcc,0xdd)
 (0xdd,0xff)

New coverage found!

39CSED415 – Spring 2025

Feedback-driven greybox fuzzing is effective

libFuzzerAFL OSS-Fuzz

Discovered millions of crashes in complex software systems

40CSED415 – Spring 2025

Test Input Generation

41CSED415 – Spring 2025

Mutation- vs Generation-based fuzzing

• Motivation: Randomly generated inputs are likely rejected by
the program under test
• e.g., When fuzzing a video player application, it is very unlikely that

a fuzzer generates a properly formatted mp4 file at random

• Two methods for better input generation
• Mutation: Mutate a given seed to generate test inputs

• Seed: A legitimate mp4 file
• Generation: Generate test inputs from an input model

• Model: Specification of mp4 file format

42CSED415 – Spring 2025

Mutation

• Frequently used mutation operators
• Bit-flipping: Flip a randomly selected bit

• e.g., 0xdead (0b1101 1110 1010 1101) à 0xdeaf (0b1101 1110 1010 1111)
• Arithmetic operation: Select a byte and add/subtract a value
• Randomization: Select a byte and randomize the value
• Insertion and deletion: Add or remove bytes
• Splicing: Crossover two test inputs

• e.g., First half of input #1 + second half of input #2

43CSED415 – Spring 2025

Generation

• Generate inputs that the program under test would accept
• A model describes the correct format
• e.g., a grammar specifying the input format

• PNG input has header and size fields
• The header field must have the “magic number”

of PNG in order for the input to be accepted
by a PNG parser

PNG format

44CSED415 – Spring 2025

Bug Oracles

45CSED415 – Spring 2025

Mutation-based greybox fuzzing overview

45

Seed Target system

0000
0000

Coverage map
Feedback

ß bug

Fuzzer

Test input

0010
0100

crash

What if the program is buggy
but does not crash?

46CSED415 – Spring 2025

A need for bug oracles

• What types of anomalous behavior do we want to find?
• Crashes, but not all vulnerabilities lead to crashes (e.g., Lab 01)
• Memory corruption: e.g., Use-After-Free (UAF) vulnerabilities
• Hang: Program does not finish within a timeout period
• Memory leaks, race conditions, specification violation, …

• A bug oracle detects any interesting behavior
occurred during the execution of a program
with the test input

47CSED415 – Spring 2025

Bug oracles in practice

• AddressSanitizer (ASan)
• Detects buffer overflows and use-after-free

• ThreadSanitizer (TSan)
• Detects data races

• MemorySanitizer (MSan)
• Detects uses of uninitialized memory

48CSED415 – Spring 2025

Address sanitizer

• Implemented as compiler module (available in clang and gcc)
• Instruments all load and store instructions
• Inserts redzones around each stack and global variable

...

buf

ebp

ret

...

...

redzone1

buf

redzone2

ebp

ret

...

Original program Sanitized program

49CSED415 – Spring 2025

Address sanitizer

• Runtime module checks whether redzones are touched when
buf is read or something is written to buf

...

buf

ebp

ret

...

...

redzone1

buf

redzone2

ebp

ret

...

Original program Sanitized program

Overflow contaminates redzone2
ASan reports buffer overflow error

Underflow contaminates redzone1
ASan reports buffer overflow error

50CSED415 – Spring 2025

Address sanitizer in action

• Without ASan
// oob.c
#include <stdio.h>
int numbers[] = { 1, 2, 3 };
int main() { /* classic out of bounds read error. */
 printf("The 4th number in my array is: %i\n", numbers[4]);
}

$ gcc oob.c –o oob

$./oob
The 4th number in my array is: 0

The bug is missed

51CSED415 – Spring 2025

Address sanitizer in action

• With ASan

$ gcc oob.c –fsanitize=address –o oob_asan

$./oob_asan
===
==365994==ERROR: AddressSanitizer: global-buffer-overflow on address 0x55aceaed5030 at pc 0x55aceaed2223 bp
0x7ffe8cfc2c20 sp 0x7ffe8cfc2c10
READ of size 4 at 0x55aceaed5030 thread T0
 #0 0x55aceaed2222 in main (/home/seulbae/test/asan/oob_asan+0x1222)
 #1 0x7fa6faf1ed8f in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58
 #2 0x7fa6faf1ee3f in __libc_start_main_impl ../csu/libc-start.c:392
 #3 0x55aceaed2124 in _start (/home/seulbae/test/asan/oob_asan+0x1124)

0x55aceaed5030 is located 4 bytes to the right of global variable 'numbers' defined in ‘oob.c:8:5' (0x55aceaed5020)
of size 12
SUMMARY: AddressSanitizer: global-buffer-overflow (/home/seulbae/test/asan/oob_asan+0x1222) in main
Shadow bytes around the buggy address:
 0x0ab61d5d29f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x0ab61d5d2a00: 00 00 00 00 00 04[f9]f9 f9 f9 f9 f9 00 00 00 00
 0x0ab61d5d2a10: f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9 f9

// oob.c
#include <stdio.h>
int numbers[] = { 1, 2, 3 };
int main() { /* classic out of bounds read error. */
 printf("The 4th number in my array is: %i\n", numbers[4]);
}

52CSED415 – Spring 2025

Final picture

Seed Instrumented
program

0000
0000

Coverage map
ß bug

Test
input

0010
0100

Bug
oracle

BugsInput
mutator

A coverage-based mutational greybox fuzzer

Coverage
monitor

53CSED415 – Spring 2025

Let’s check the fuzzing results (from page 23)

• How many trials were required to find the bug through
blackbox fuzzing?
• Random mutation, no coverage feedback
• Crash: Random 4 bytes being identical to "\xde\xad\xbe\xef"

• Theoretically requires 2#" ≈ 4.2 billion trials
• Experimentally: (see terminal)

54CSED415 – Spring 2025

vs AFL

• AFL: The most widely used coverage-guided mutation-based
fuzzer
• Instrumentation for code coverage using AFL’s custom complier

• Prepare a seed input

• Run fuzzer

$ afl-cc target.c –O0 –o target_afl

$ rm –rf in out
$ mkdir in out
$ echo -ne "\xff\xff\xff\xff" > in/seed

$ afl-fuzz -i in -o out -- ./target_afl

55CSED415 – Spring 2025

Questions

• Is fuzzing sound? (no false positives?)
• Is fuzzing complete? (no missed bugs?)

All existing bugs (i.e., truth)

What sound
algorithm

identifies as bugs

What complete algorithm identifies as bugs

All existing bugs (i.e., truth)

Conclusion: Fuzzing is neither sound nor complete, but it is practical and scalable

à Fuzzer can have FP if its oracles are unsound à Fuzzer can miss bugs as it
partially explores target program

56CSED415 – Spring 2025

Questions?

