Lec 26: Symbolic Execution

CSED415: Computer Security
Spring 2025

Seulbae Kim
POSTECH

Administrivia
* Lab O5 is due by the end of Friday, May 23

* Attend office hours for help!
* TA: Mondays and Thursdays 7-8 PM
* Prof. Thursdays 1-2 PM

CSEDA415 — Spring 2025 2

Administrivia
* Project presentations — Next week

* Each team: 15-minute presentation + 5-minute Q&A (20 minutes total)
* Three teams will present on Tue, May 27
* The other teams will present on Thu, May 29

* Presentation must include a demonstration (live or recorded)

* All teams MUST submit their slides, code and/or binary, and report
by May 26
* Check PLMS assignment for details

CSEDA415 — Spring 2025 3

Presentation order

* May 27
e
e
e

* May 29
. ?

. ?

CSEDA415 — Spring 2025

import random
import time

random.seed(time.time())

teams = [
"CLPPT",
"Potato Salad",
"SecuXchange",
"Wireshark",
"Re:main",

]

random.shuffle(teams)
print(teams)

rPOSTRPCH

Administrivia

rPOSTRPCH

* Final exam:
 Time: Thursday, June 5, 2:00-3:15 PM (75 minutes)
* Location: Classroom (Science Building Il, Room #106)

e Format: Closed book, closed notes, no electronic devices allowed

* Allowed: One-page (US letter- or Ad-sized) double-sided handwritten cheat
sheet

e Structure: 6 main questions (each may have sub-questions)
e Scope: Lectures 15-26, Labs 03-05

CSEDA415 — Spring 2025 5

Program Analysis for
Bug Finding — Part 2

CCCCCCC — Spring 2025 rPOSTEREPLCH

Motivation

rPOSTERCH

* Fuzzing is sound if its bug oracle is precise
* Bugs detected by a fuzzer are true bugs (no false positives)

* However, it is far from being complete
* Many bugs remain undiscovered (false negatives)

- Question: Is there an approach that aims to be
complete, i.e., in theory, misses no bug?

CSEDA415 — Spring 2025 7

Static vs Dynamic analysis

rPOSTERCH

* Static analysis: * Dynamic analysis:
* Examine program (binary or * Monitor program’s runtime
code) without running it behavior during execution
* Examples: * Examples:
* Decompilation * Fuzzing (Previous topic) |¥
* Pointer analysis * Concolic execution

Symbolic execution
(Today'’s topic)

CSEDA415 — Spring 2025 8

Symbolic Execution

CCCCCCC — Spring 2025 rPOSTEREPLCH

Concrete (dynamic) vs Symbolic execution

rPOSTERCH

* Consider the following target program

if (input == Oxdeadbeef) {

bug();
} else {

no_bug();
}

* |[n our last in-class experiment, our blackbox fuzzer executed this
program for over 3 million times, yet never reached bug()

What if we, humans, try?

CSEDA415 — Spring 2025 10

Concrete (dynamic) vs Symbolic execution

rPOSTERCH

* We humans immediately see that input == 0xdeadbeef
triggers the bug by just looking at the code
* How? We solved the path constraint of the buggy if branch!

l

if (input == Oxdeadbeef) {

bug();
} else {
no_bug();

}

Can a computer do the same?

CSEDA415 — Spring 2025 11

Concrete (dynamic) vs Symbolic execution

rPOSTERCH

* Concrete execution: Run a program with a concrete input

 Concrete input is a fixed value
* Program behavior (i.e., branches taken) is d

* Symbolic execution: Run a program wit

etermined by t

N symbolic in

* Symbols are variables that can take any va

ue

ne input

outs

* We can reason about all feasible program behaviors using the symbols

e Goals:
* Explore all execution paths of a program

* For each path, obtain concrete test inputs that satisty its constraints

CSEDA415 — Spring 2025

12

Symbolic execution — How?

rPOSTERCH

* Symbolic executor maintains an internal state (st, o,)
* st. The next statement to evaluate
* 0. Symbolic store (storage for symbolic variables)
* 1. Path constraints

* Depending on st, symbolic execution proceeds as follows:
e st is an assignment (e.g., var = e):

* 0 is updated by associating LHS (var) with a new symbolic expression e, obtained
by evaluating RHS (e) symbolically

e st is an if statement (e.q., if e, then path, else path,):
* Program is forked by creating two states with path constraints T A e and T A —e,

e st is an assertion (e.g., assert(e)):
* The validity of e is checked using path constraints

CSEDA415 — Spring 2025 13

Example of symbolic execution

rPOSTERCH

o:. Symbolic store . Path constraints

void buggy(int x, int y) {

int 1 = 10;
int z=y * 2;
if (z == x) {

if (x >=vy + 10) {
z=2z/ (L -10); // divzero
}
}
}

CSEDA415 — Spring 2025 14

Example of symbolic execution

st mmp void buggy(int x, int y) {

int 1 = 10;
int z=y * 2;
if (z == x) {

if (x >=vy + 10) {
z=2z/ (L -10); // divzero
}
}
}

x and y are symbolic values

CSEDA415 — Spring 2025

rPOSTERCH

o:. Symbolic store

X = X
Y= Ys

(Notation: var — sym)

1. Path constraints

true

(no branches yet)

15

Example of symbolic execution

rPOSTEPLCH
o:. Symbolic store . Path constraints
void buggy(int x, int y) { X — X true
st mm) int 1 = 10;
int z =y * 2 Y=)Ys (no branches yet)
if (z == x) {

if (x >=vy + 10) {
z=2z/ (L -10); // divzero
}
}
}

1is a concrete value

CSEDA415 — Spring 2025 16

Example of symbolic execution

void buggy(int x, int y) {

int 1 = 10;
st mmp int z =y * 2;
if (z == x) {

if (x >=vy + 10) {
z=2z/ (L -10); // divzero
}
}
}

st is an assignment

o is updated by associating LHS (z)
with a new symbolic expression e
obtained by evaluating RHS (y*2)
symbolically

CSEDA415 — Spring 2025

rPOSTERCH

o:. Symbolic store

X = X

Y= Ys

Z > 2%y

1. Path constraints

true

(no branches yet)

17

Example of symbolic execution

rPOSTEPLCH
Path 1
o:. Symbolic store . Path constraints
vo:tdtbgggy(lént x, int y) { | en X = Xg X = 2 % Vg
int 1L = ; 1: if 12 —
int z =y * 2; patl Y= Ys
st = if (z == x) { Z > 2%y
if (x >=vy +1
z=2z/ (1L -1
}
}
} Path 2

st is an if statement

Program is forked by creating two states
with path constraints T A e and T A —eg

Here, e, is the symbolic evaluation of z == x

o. Symbolic store

X = X

Y = JYs

Z > 2%y

1. Path constraints

X F 2 %Y

CSEDA415 — Spring 2025

18

Example of symbolic execution

rPOSTEPLCH
Path 1
o:. Symbolic store . Path constraints
void buggy(int x, int y) { X = Xg X = 2 % Vg
int 1 = 10;
int z =y * 2; Y=
if (z == x) { Z > 2%y
if (x >=vy + 10) {
z=2z/ (1 -10); // divzero
}
st wmmp }
}
st hits a dead end if path 2 is followed
Nothing left to do for path 2. Final states
Go back and further explore path 1. Path 2
o. X > Xg
Yy =Ys
Z = 2%Ys
T Xs # 2% s

CSEDA415 — Spring 2025 19

Example of symbolic execution

void buggy(int x, int y) {

int 1 ;

int z

if (z

st =) if (x >

st is an if statement

Program is forked by creating two states
with path constraints T A e and T A —eg

Here, e, is the symbolic evaluation of x>=y+10

CSEDA415 — Spring 2025

Path 1-1

ol X = Xg
Y= JYs
Z > 2*Yg

T (xs= 2 *ys) N (xs= ys + 10)

Path 1-2

g. X > Xg
Y = Ys
Z > 2%y

T (x5 = 2% y5) A (xs< ys + 10)

Final states
Path 2

ol X > Xg
Y =JYs
Z—>2%*Yys

T Xs # 2% s

rPOSTERCH

20

Example of symbolic execution

rPOSTERCH

Path 1-1
0. X > Xg
void buggy(int x, int y) { Yy > Ys
int 1 = 10; Z22%Ys
int z =y * 2; T (xg= 2 *y5) N (xs= ys + 10)
if (z == x) {
if (x >=vy + 10) {
z=2z/ (L -10); // divzero
st m—p }
}
}
st hits a dead end if path 1-2 is followed
Nothing left to do for path 1-2. Final states
Go back and further explore path 1-1. Path 2 Path 1-2
o. X > Xg g. X > Xg
Yy =Ys Y= Ys
Z—>2%*Yys Z > 2%y
M Xs #F 2% Ys || T (x5 = 2% Yg) A (x5< Y5 + 10)

CSEDA415 — Spring 2025 21

Example of symbolic execution

rPOSTERCH
Path 1-1
0. X > Xg
void buggy(int x, int y) { Y 2 Ys
int L = 10; z = 2%ys/0
int z =y * 2; T (xg= 2 *y5) N (xs= ys + 10)
if (z == x) {
if (x >=vy + 10) {
st =) z=2z/ (L -10); // divzero
}
}
}
st is an assignment
o is updated by associating LHS (z) Final states
with a new symbolic expression eg Path 2 Path 1-2
obtaingd by evaluating RHS (z/(1-10)) o % — % o X — X,
symbolically Y= Ys Yy =Ys
. Z = 2%Ys Z = 2%Ys
Note: 1 is a concrete value o xs % 2% Ys || (kg = 2 % y0) A (1< ¥, + 10)

CSEDA415 — Spring 2025 22

Example of symbolic execution

void buggy(int x, int y) {

int 1 = 10;
int z=y * 2;
if (z == x) {

if (x >=vy + 10) {
z=2z/ (L -10); // divzero
}
}
st wmmp }

All program paths have been explored

Final states
Path 1-1

g. X = Xg
Y2 Ys

rPOSTERCH

Potential div-by-zero error

z—>2xys /0
T (xs= 2 * Ys) A (xs= ys + 10)

Path 1-2

ol X > X
Y = Ys
Z—>2xys

T (xs= 2 * Y5) A (xs< ys + 10)

Path 2

. X > X
Yy = Ys
Z > 2%
T X #F 2% Y

» is detected! If i is satisfiable,
this is an actual bug

Next step: Solving m to obtain concrete test inputs for each path

CSEDA415 — Spring 2025

23

Example of symbolic execution

rPOSTELCH
Solvin Concrete
Path 1-1 oving T input
g ;C, - ;S Find x; and y, that satisfy v = 20
z—>25*ys/0 m) o x. = 2=x7y,and ‘ys;lo \
T (xg= 2 * y5) A (xs= s + 10) * X =2Ys+10 ’ Verification?
void buggy(int x, int y) {
Path 1-2 int i = 10;
. int z =y *x 2;
o ;C,:f,j Find x, and y; that satisfy ‘. =0 if (z == x) {
z = 2%y m) - x5 =2x*Ys;and —) by = —) if (x >= y + 10) {
T (xg= 2 * y5) N (xs< yg + 10) y xS<yS+1O S }Z_Z/ L= A0GE
}
Path 2 }
0. X > Xg
Yy = Ys — Find x5 and y, that satisfy ; xs =1 ’
Z—)Z*)’s ° xS:'tz*yS ySZO
T Xg F 2% Y

Program has been completely tested; all paths and corresponding inputs are discovered

CSEDA415 — Spring 2025 24

CSEDA415 — Spring 2025

SMT Solver

rPOSTERCH

25

Constraint solving

rPOSTERCH

* We manually solved the path constraints

* To automate symbolic execution, the constraints should be
solved by a machine (computer)

e There exist “solvers” for this task

CSEDA415 — Spring 2025 26

Satisfiability

» Satisfiability (SAT) is the problem of determining if there exists
an assignment of values to variables that makes a given
Boolean formula true
» Example formula: (AV =B) A (B V ()

e A, B, and C are Boolean variables
e Can either be true or false

e Satisfiability assignment:
* A =true, B = false, C = true (one of the viable solutions)

CSEDA415 — Spring 2025 27

Satisfiability Modulo Theories (SMT)

rPOSTERCH

* SMT extends the SAT problem to more complex domains
* Including theorems for arithmetic, bit-vectors, and arrays

* SMT solvers determine the satisfiability of logical formulas
« Example formula: (x =2*y) A(x =y + 10)
» Satisfiable assignment:
e x = 20, y = 10 (one of the viable solutions)

We can utilize SMT solvers for solving path constraints

CSEDA415 — Spring 2025 28

Example: Z3 solver

rPOSTERCH

* A widely-used SMT solver developed by Microsoft Research
* Using Z3 (through its Python binding)

* |nstallation
$ pip3 install z3-solver

* Usage
sat.py # unsat.py
from z3 import * from z3 import *
X = Int("x") x = Int("x")
y — Int(llyll) y — Int(llyll)
solve(x == 2 *x y, x >=vy + 10) solve(x == 2 * y, x =2 * y)
$ python3 sat.py $ python3 unsat.py

[y = 10, x = 20] no solution

CSEDA415 — Spring 2025 29

KLEE: A Symbolic
Execution Engine

CCCCCCC — Spring 2025 rPOSTEREPLCH

KLEE (OSDI ’08)

rPOSTERCH

* Cristian Cadar, et al.,
“KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs”,
OSDI, 2008

* One of the most widely used open-source symbolic execution
engines

CSEDA415 — Spring 2025 31

Using KLEE

rPOSTERCH

* Installation
* Recommended: Docker image with KLEE pre-installed

$ docker pull klee/klee:3.0
$ docker run --rm -ti1 --ulumit='stack=-1:-1' klee/klee:3.0
klee@[container id]:~$%

CSEDA415 — Spring 2025 32

Using KLEE

rPOSTERCH

* Target program: Example from Lecture 25

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

void bug(void) {
printf("bug!\n");
raise(SIGSEGV);

}

int main(void) A
setvbuf(stdout, NULL, _IONBF, 0);
setvbuf(stdin, NULL, _IONBF, 0);

char in[4];
FILE xfp = fopen("/dev/stdin", "rb");
fread(&in, 4, 1, fp);
if (in[0] == " ")
if (in[1] =" ")
if (in[2] =" ")
if (in[3] == " ")
bug();
fclose(fp);
return 0;

CSED415 — Spring 2025 target.c 23

Using KLEE

* Modity target’s code:

e Specify symbolic inputs

* Replace fread with klee_make_symbolic
 We want to find a 4-byte string

#include
#include
#include
#include
#include

<signal.h>
<stdio.h>

<stdlib.h>
<unistd.h>
<assert.h>

void bug(void) {

printf("bug!\n"
// raise(SIGSEG

assert(0);

}

int main(void) {

)3
V);

rPOSTERCH

that triggers the bug

CSEDA415 — Spring 2025

setvbuf(stdout, NULL, _IONBF, 0);
setvbuf(stdin, NULL, _IONBF, 0);

char in[4];
// FILE *fp = fopen("/dev/stdin", "rb");
// fread(&in, 4, 1, fp);
klee_make_symbolic(in, 4, "in");
if (in[0] == " ")
if (in[1] =")
if (in[2] =" ")
if (in[3] == " ")
bug();

// fclose(fp);
return 0;

target.c 24

Using KLEE

rPOSTERCH

 Compile target to LLVM bitcode and run KLEE

klee@[container _idl:~% clang -I klee_src/include -emit-1lvm -g -c target.c

klee@[container_id]:~$ klee target.bc

KLEE: output directory is "/home/klee/klee-out-0"
bug!

KLEE: ERROR: target.c:9: ASSERTION FAIL: 0

KLEE: NOTE: now ignoring this error at this location

KLEE: done: total instructions = 43

KLEE: done: completed paths = 4

KLEE: done: partially completed paths = 1
KLEE: done: generated tests = 5

CSEDA415 — Spring 2025 35

Using KLEE

rPOSTERCH

* Check KLEE-generated test cases

klee@[container_id]:~$ cd klee-last
klee@9048d3ab7cf9:~/klee-last$ ls | grep ktest
test000001.ktest test000002.ktest test000003.ktest test000004.ktest testOOO005.ktest

klee@[container id]:~/klee-last$ ktest-tool test000005.ktest

ktest file : 'test000005.ktest'

args : ['target.bc']

num objects: 1

object 0: name: 'in' The input we marked as symbolic

object 0: size: 4

object 0: data: b'\xde\xad\xbe\xef' Exact value of the symbolic input for the path

klee@[container id]:~/klee-last$ cat test000005.assert.err
Error: ASSERTION FAIL: 0
File: target.c

Line: 9

assembly.ll line: 23
State: 1

Stack:

Detected error and the stack trace

#000000023 in bug() at target.c:9
#100000073 in main() at target.c:23

CSEDA415 — Spring 2025 36

Limitations of
Symbolic Execution

CCCCCCC — Spring 2025 rPOSTEREPLCH

Practical issues of symbolic execution

rPOSTERCH

* Loops and recursions
e | eads to infinite execution tree

* Path explosion
* Number of paths exponentially increase

* SMT solver limitations
« Complex path constraints cannot be solved

* Environment modeling
e System calls, library calls, file operations, ...

CSEDA415 — Spring 2025 38

Practical issues of symbolic execution

rPosTeCH
* Loops and recursions
e L eads to infinite execution tree
void loopy(int x, int y) {
int 1L = 0;
while (1 < 500) { As the loop repeats, path constraint becomes massive:
if (x +1>10 *y){ (g > 10 % yo) A (g + 1> 10 % yo) A (xg + 2 > 10 * y) A -+
bug();
}
1++;
}
}

CSEDA415 — Spring 2025 39

Practical issues of symbolic execution

* Path explosion
* Symbolic executor forks the program under test at every branch
* Each branch doubles the number of states
* Number of paths exponentially increase due to nested branches

CSEDA415 — Spring 2025 40

Practical issues of symbolic execution

rPOSTERCH

* Environment modeling

* How to deal with external calls?
e.g., system calls, library calls, file operations, ...

vold read_pixels(int width, int height) { - assume the parameters are symbolic
char pixel_buf[1024];
int fd = open("/tmp/image.png"”, O_RDWR);
ssize_t num_bytes = read(fd, pixel_buf, width + height);
if (num_bytes == -1) {
assert(0);

}
}

We cannot symbolically represent num_bytes in terms of width and height
as it depends on the actual size of /tmp/image.png

- No path constraint can be derived for the if branch

CSEDA415 — Spring 2025 41

Practical issues of symbolic execution
* SMT solver limitations

* Solvers are not omni-potent

* Some path constraints require long time to be solved

« Complex path constraints cannot be solved at all

Combined with the path explosion problem, a complete
analysis of a large and complex program is often infeasible

CSEDA415 — Spring 2025 42

Practical Solutions

CCCCCCC — Spring 2025 rPOSTEREPLCH

Concolic execution

rPOSTERCH

* Conc = Concrete + Symb
* Also called dynamic symbolic execution

* Program is executed simultaneously with both concrete and symbolic
INputs

* Concrete inputs help dealing with external calls (e.g., read file)
* Symbolic inputs help exploring branches

CSEDA415 — Spring 2025 a4

Concolic execution

rPOSTERCH

* Conc = Concrete + Symb

void read_pixels(int width, int height) {
char pixel_buf[1024];
int fd = open("/tmp/image.png", O_RDWR);
ssize_t num_bytes = read(fd, pixel_buf, width + height);
if (num_bytes == -1) {
assert(0);

}
}

» Concrete execution reveals the file size of /tmp/image.png, i.e,actual_sz

* |t also reveals the semantics of the read syscall:
« 1f (width + height) >= actual_sz, then num_bytes = actual_sz
- num_bytes is concrete, therefore the if branch is not taken

« else, num_bytes = width + height
- num_bytes is symbolic, therefore symbolic execution can solve the path constraint of the if branch

CSEDA415 — Spring 2025 45

Hybrid fuzzing

* |[dea: Use symbolic execution for difficult branches and fuzzing
to resolve path explosion

* Fuzz until code coverage saturates at one point

* Run symbolic execution cross an uncovered branch
 Feed the new input back to the fuzzer

CSEDA415 — Spring 2025 46

Hybrid fuzzing

rPOSTERCH

* |[dea: Use symbolic execution for difficult branches and fuzzing
to resolve path explosion

int x; // user 1input
char buf[32]; // user 1input
1. Fuzzing coverage wmmmm){f (x == Oxdeadbeef) { // hard for fuzzing 2%chancetofind correct x

saturates here int count = 0;
2. Symbolic executor for (int 1 = 0; 1 < 32; 1++) {

engages and finds that if (buf[i] >= 'a') {

count++;
x=0xdeadbeef ! ’
}
3. Fuzzer mutates buf) {f (count >= 8) { // hard for symbolic execution
and easily enters /* o0 */ No. of feasible paths = 232 (two for each element of buf[32])
the branch \ } - Path explosion!

CSEDA415 — Spring 2025 47

Summary

rPOSTERCH

* Bug finding is crucial for securing computer systems

* Manual analysis can be daunting as modern systems have become
too large and complex

* Greybox fuzzing aims to be sound
|t finds real bugs, but misses existing bugs

* Symbolic execution aims to be complete
* In theory, it finds all bugs by exploring all program paths
* However, complete analysis is impossible due to practical limitations

* Both techniques are widely used in practice

* Various combinations of the two are being proposed to achieve
soundness and completeness at the same time

CSEDA415 — Spring 2025 48

Questions?

CCCCCCC — Spring 2025 rPOSTEREPLCH

