
RoboFuzz: Fuzzing Robotic Systems over
Robot Operating System (ROS) for

Finding Correctness Bugs
ESEC/FSE 2022

Seulbae Kim, Taesoo Kim

Motivation: Robotic systems are intriguing targets

• Robots: One type of Cyber-Physical Systems

2

TurtleBot3 “Burger”[SENSING]
360° Laser distance sensor

Camera sensor [SOFTWARE]
Object recognition,

Differential driving algo.

[ACTUATION]
Dynamixel motors

Sensor malfunction,
spoofing attack, …

SW errors,
vulnerabilities, …

Driver firmware errors,
physical attacks, …

Challenges of testing robotic systems

1. Systems are heterogeneous
• Factories, surgical robots, drones, autonomous cars, …
• Req) Need to focus on common properties

2. Input space is humongous – as big as the physical world
• Robots operate in different conditions and environments
• Req) Need to efficiently explore the search space

3. Physical processes are noisy
• Sensors and actuators are noisy as they interact with the real world
• Req) Cyber-physical discrepancy must be considered

3

Tackling challenge #1 (heterogeneity)

• Robot Operating System (ROS) is a de facto standard for
robot development

4

Robot development using ROS

• ROS-based robotic application: + +

5

camera

LiDAR

front_image

laser_dist

object_
detector

path_planner

hazard_logger

objects

node topic

publish

publish

publish

subscribe

subscribe

subscribe

subscribemsg:
(human, 5m)

msg

msg:
(human, 5m)

msg:
(human, 5m)

msg:
(human, 5m)

msg:
(human, 5m)

Robot development using ROS

• ROS-based robotic application: + +

6

camera

LiDAR

front_image

laser_dist

object_
detector

path_planner

hazard_logger

objects

node topic

publish

publish

publish

subscribe

subscribe

subscribe

subscribemsg:
(human, 5m)

msg

msg:
(human, 5m)

The behavior of ROS-based systems can be summarized
as the data (message) flow among distributed nodes

Tackling challenge #2 (huge input space)

7

• Feedback-driven fuzzing to the rescue

input target system

0100
1011
1100
1011
1100
1001
1101
1001
1101
0001
1101
0101
1001
0101
1001
0100
1011
0100

coverage map

Coverage feedback

ß buggy code

A need for a new feedback mechanism

8

General software programs

• Diverse, linear code paths
• More code paths ≃ more bugs found

Sensing Perception

PlanningActuation

Robotic systems

• Distributed system
• Behavior is driven by state changes

in a loop, not by code paths

Semantic feedback for robotic systems

• Fundamental questions
• How do we determine if the robotic system is approaching an

undesirable state?
• What indicates that the robotic system is being driven towards

buggy states?

9

Semantics of the execution can be utilized as feedback!

e.g., Redundant sensor inconsistency as feedback

• The case of PX4 flight controller
• Pixhawk 4 has two Inertial Measurement Units (IMU)

• IMU consists of an accelerometer (measures linear acceleration)

10

IMU1: ICM-20689 of TDK
IMU2: BMI-055 of Bosch

Diff. of measured acceleration
(stable operation)

Average diff < 0.01 m/s2

Diff. of measured acceleration
(crashed mission)

diff = 76 m/s2

Tackling challenge #3 (noise)

• Key intuition
• It is impossible to perfectly model the physical world
• There will always be cyber-physical discrepancy to some degree
• Let’s use the discrepancy to our advantage

11

We can simultaneously execute a robotic system
in a simulator and in the real world

Tackling challenge #3 (noise): Hybrid execution

12

• States and events from both worlds are monitored, e.g.,
• Phy: location (gps), collision (camera), battery state, motor temp.
• Sim: location (gps), collision (script), non-existent, non-existent

Some states exist only
in the physical world

Some states diverge, which is an
important execution feedback

Which types of bugs are we looking for?

• A new class of bugs in robotic systems: correctness bugs

13

Classic software bugs Robotic correctness bugs

?

Which types of bugs are we looking for?

• A new class of bugs in robotic systems: correctness bugs

14

Violation of
physical laws

Violation of
specification

Cyber-physical
discrepancy

Overview of RoboFuzz

15

System
Inspector

Message
Mutator

Hybrid
Executor

Oracle
Handler

Feedback
Engine

msg’

Simulator Real world

BUG?

No

YesBug
Report

Test Target

Node-Topic Graph

System Inspector

16

System
Inspector

Test Target

Node-Topic Graph

• Generates a node-topic graph
• Select a topic to inject mutated messages

camera

LiDAR

front_image

laser_dist

object_
detector

path_planner

hazard_logger

objects

publish

publish

publish

subscribe

subscribe

su
bs
cri
be

subscribe

Inject
here

Fuzz these
nodes

• Structure-aware mutation
• ROS messages are structured

Message mutator

17

An example message

Message
Mutator

msg’

Hybrid executor

18

• Set up a pair of simulated and physical test beds
• Identical environment
• Robots subscribe to the same topic
• Publish mutated messages to the topic
• Both robots receive the message and

take corresponding actions

Hybrid
Executor

Simulator Real world

msg’ msg’

Oracle handler

• Collects and merges states from
hybrid execution
• Allows developers to declare and apply

custom correctness oracles
• Reports if any violation is found
• See paper for our specialized oracles

• for two ROS internals and
four ROS-based robots

19

Oracle
Handler

Simulator Real world

BUG?
Yes Bug

Report

statesim statereal

Feedback engine

• If no bug is found, calculates the feedback score
• Using the semantic feedback metrics

• e.g., redundant sensor inconsistency
• Users can register custom feedback metrics

• Favorable inputs are enqueued
• Further mutated in the subsequent

fuzzing rounds

20

Message
Mutator

Feedback
Engine

BUG?

No

Feedback
score

semantic
feedback
metrics

Evaluation

• Environment
• Laptop machine running Ubuntu 20.04
• Intel i7-8850H 2.6Ghz, 16GB RAM, Quadro P2000 Mobile GPU

• Six fuzzing targets
• ROS 2 internals:

• ① Type system (ROSIDL), ② Client library (rclpy/rclcpp)
• ROS 2-based robots:

• ③ PX4, ④ TurtleBot3, ⑤ MoveIt2, ⑥ Turtlesim

21

Overall effectiveness of RoboFuzz

• RoboFuzz fuzzed each target for 12 hours
• Found 30 new correctness bugs (25 acknowledged, 6 fixed)

• ROS 2 Internal layers
• 8 in ROSIDL (①)
• 5 in rclpy/rclcpp (②)

• Applications
• 8 in PX4 drone (③)
• 5 in TurtleBot3 (④)
• 2 in MoveIt2 (⑤)
• 2 in Turtlesim (⑥)

22

è Utilized hybrid fuzzing for ③ & ④

è affects any robot built upon ROS 2

Demo – TurtleBot3 spec. violation

23

Maximum linear velocity
- Spec : 0.22 m/s
- Actual: 0.21 m/s

BUG: Achievable velocity
is smaller than documented
due to a float handling
bug in motor driver

MANIFESTATION:
Simulated robot can move
at 0.22 m/s
The physical robot cannot

https://youtu.be/MB5iCiYLBCI

https://youtu.be/MB5iCiYLBCI

Effectiveness of semantic feedback

• Fuzzing PX4 with and without semantic feedback for 12 hr
• 9 bugs with semantic feedback
• 2 bugs without feedback

24

9

2

Summary

• Targeted correctness bugs in ROS and ROS-based robots
• Semantic feedbacks are defined and registered to efficiently

explore the input space
• Utilized hybrid execution model to collect and compare the

states of both cyber and physical robots
• Found 30 new correctness bugs in multiple robotic systems
• Open-sourced at https://github.com/sslab-gatech/robofuzz

• Artifact evaluated: available (), evaluated & reusable ()

25

https://github.com/sslab-gatech/robofuzz

Q & A

