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a b s t r a c t 

With the growth of open source software (OSS), code clones – code fragments that are copied 

and pasted within or between software systems – are proliferating. Although code cloning 

may expedite the process of software development, it often critically affects the security of 

software because vulnerabilities and bugs can easily be propagated through code clones. 

These vulnerable code clones are increasing in conjunction with the growth of OSS, poten- 

tially contaminating many systems. Although researchers have attempted to detect code 

clones for decades, most of these attempts fail to scale to the size of the ever-growing OSS 

code base. The lack of scalability prevents software developers from readily managing code 

clones and associated vulnerabilities. Moreover, most existing clone detection techniques 

focus overly on merely detecting clones and this impairs their ability to accurately find “vul- 

nerable” clones. 

In this paper, we propose VUDDY, an approach for the scalable detection of vulnerable code 

clones, which is capable of detecting security vulnerabilities in large software programs 

efficiently and accurately. Its extreme scalability is achieved by leveraging function-level 

granularity and a length-filtering technique that reduces the number of signature compar- 

isons. This efficient design enables VUDDY to preprocess a billion lines of code in 14 hours 

and 17 minutes, after which it requires a few seconds to identify code clones. In addition, 

we designed a vulnerability-preserving abstraction technique that renders VUDDY resilient 

to common modifications in cloned code, while preserving the vulnerable conditions even 

after the abstraction is applied. This extends the scope of VUDDY to identifying variants 

of known vulnerabilities, with high accuracy. An implementation of VUDDY has been ser- 

viced online for free at IoTcube, an automated vulnerability detection platform. In this study, 

we describe its principles, evaluate its efficacy, and analyze the vulnerabilities VUDDY de- 

tected in various real-world software systems, such as Apache HTTPD server and an Android 

smartphone. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

or the past decade, open source software (OSS) has grown 

apidly in size, and is becoming a foundation for a major- 
ty of applications, operating systems, databases, and web 
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ervers. The number of repositories in GitHub increased from 

 million to 10 million between July 2010 and December 2013,
nd then to more than 66 million in August 2017, with most of
he repositories being software projects ( GitHub ). Black Duck 
oftware and North Bridge revealed in 2016 Future of Open 

ource survey that 78% of the companies run open source 
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software ( Blackduck ). In literature, researchers showed that
open source projects have linear to quadratic growth patterns
( Godfrey and Tu, 2000; Scacchi, 2006; Succi et al., 2001 ). 

The considerable increase and the ubiquitous use of OSS
programs have naturally led to an increase in software vulner-
abilities caused by code cloning, thereby posing dire threats
to the security of software systems ( Li et al., 2015 ). Numer-
ous instances in practice substantiate the claim that software
vulnerabilities are propagated through code cloning ( Dang
et al., 2017 ). For example, the OpenSSL Heartbleed vulnerabil-
ity (CVE-2014-0160) has affected a number of different types
of systems including web applications as well as OS distri-
butions, and even hardware products such as routers and
switches, because the affected systems cloned a part or the
entire OpenSSL library into their systems. 

Moreover, the life cycle of vulnerabilities even aggravates
such problem. That is, even if a vendor were to release a se-
curity patch immediately after the discovery of vulnerability
in the original program, it would take time for the patch to
be fully deployed through every program that cloned the vul-
nerable code of the original program ( Nappa et al., 2015 ). This
“time lag” between patch release and deployment increases
when more steps and parties are involved in manufacturing
an end product. For example, Google takes the Linux kernel
to make the Android operating system, and then smartphone
vendors take the Android OS in order to make firmware for
their smartphone. Therefore, we can hardly expect that secu-
rity patches issued for Linux kernel are immediately applied
to smartphone’s firmware. Taking advantage of this fact, the
attackers in 2016 could successfully deploy the “Dogspectus”
ransomware to a lot of Android smartphones by exploiting
two-year-old kernel vulnerability (CVE-2014-3153) residing in
the firmware. 

To address such clone-related problems, many researchers
have proposed code clone detection techniques ( Rattan et al.,
2013 ). However, few techniques are suitable for accurately
finding vulnerability in a scalable manner. Token-based lex-
ical techniques such as CCFinder ( Kamiya et al., 2002 ) and CP-
Miner ( Li et al., 2006 ) not only suffer from low scalability of
complex token sequence comparing algorithms they take, but
also have high false positive rate caused by their aggressive ab-
straction and filtering heuristics. This implies that this design
does not guarantee sufficient reliability to be useful for vulner-
ability detection. Similarly, abstract data structure based ap-
proaches (e.g., Deckard ( Jiang et al., 2007 b), or Baxter’s ( Baxter
et al., 1998 )) have to apply expensive tree-matching opera-
tions or graph mining techniques for similarity estimation. Al-
though such approaches would be capable of discovering code
fragments with similar syntactic patterns, this does not guar-
antee an accurate vulnerability detection because two code
fragments with identical abstract syntax trees (ASTs) do not
necessarily contain the same vulnerability ( Jiang et al., 2007 a).
SourcererCC ( Sajnani et al., 2016 ) uses a bag-of-token strat-
egy to manage minor to specific changes in clones, which im-
pairs the accuracy and results in high false positive rate. Deep
learning approach was also proposed ( White et al., 2016 ), but
its effectiveness in large-scale code bases is not verified. No-
table exception is ReDeBug ( Jang et al., 2012 ) which aims to
achieve both accuracy and scalability by applying hash func-
tions to lines of code and later detecting clones by compar-
ing hash values through bloom filter. However, when it comes
to finding vulnerable code clones in massive code bases, Re-
DeBug is still not satisfactory both in terms of accuracy and
scalability. Some techniques leverage a combination of vari-
ous approaches. VulPecker ( Li et al., 2016 ) characterizes a vul-
nerability with a predefined set of features, then selects one of
the existing code-similarity algorithms (e.g. Jang et al. (2012),
Li et al. (2006) and Pham et al. (2010) which is optimal for the
type of vulnerable code fragment. A considerable amount of
time required for the learning phase and algorithm selection
makes it improper to be used against massive open source
projects. An approach to analyze code heterogeneity for de-
tecting repackaged Android malware ( Tian et al., 2016, 2017 )
utilizes machine learning algorithms, which are heavily de-
pendent on the manual efforts to select features. 

Meanwhile, our preliminary work, called VUDDY ( Kim
et al., 2017a ), proposed the most scalable and accurate
approach for vulnerable code clone detection by leverag-
ing function-level granularity and applying vulnerability-
preserving abstraction method. In this paper, we briefly de-
scribe the approach we used for scalable and accurate detec-
tion of vulnerable code clones, then provide a detailed analysis
of code reuse patterns and associated vulnerabilities in real-
world software systems. In practice, we discovered several
kernel vulnerabilities in the recently released smartphones,
and successfully exploited the vulnerabilities. In addition, we
identified several famous open source software which are re-
leased with old, vulnerable libraries. These results show that
security patches are deployed at a slow pace if code is reused,
and because of this, unpatched vulnerabilities can easily be
exploited for malicious activities even though they are not
zero-day vulnerabilities. 

The contributions of this study include: 

• Scalable clone detection: We propose VUDDY, an approach to
scalable yet accurate code clone detection, which adopts
a robust parsing and a novel fingerprinting mechanism for
functions. VUDDY is able to process a billion lines of code in
only 14 hours and 17 minutes, which is an unprecedented
speed. 

• Vulnerability-preserving abstraction: We present an effec-
tive abstraction scheme optimized for detecting unknown
vulnerable code clones. This allows VUDDY to detect un-
known vulnerable code clones, as well as known vulnera-
bilities in a target program. Owing to this design, VUDDY
detects 24% more vulnerable clones which are unknown
variants of known vulnerabilities. 

• Analysis of cloned vulnerabilities in real-world software sys-
tems: We analyze and verify the cloned vulnerabilities de-
tected in the software systems in practice, including fa-
mous projects on GitHub and SourceForge, and smart-
phones with high market shares. Our analysis draws a sig-
nificant insight that there is a vicious cycle of vulnerable
code clone propagation and prolonged patch distribution. 

• Open service: We have been servicing VUDDY as a form of
open web service at no charge, since April 2016. In practice,
VUDDY is being used by many in the open source commu-
nity and by IoT device manufacturers, for the purpose of
examining their software. In the past 17 months, 20 billion
lines of code have been queried to our open service, and
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Fig. 1 – Two stages of VUDDY: preprocessing and clone 
detection. 
253,036 vulnerable functions have been detected. Please 
see https://iotcube.net/ . 

. Vulnerable code clone discovery 

n this section, we describe our preliminary work VUDDY (VUl- 
erable coDe clone DiscoverY), which is a scalable approach 

o code clone detection that can be seamlessly applied to the 
assive OSS pool. 

.1. Goals and scope 

he types of code clones have to be clarified in order to address 
he goals and scope of VUDDY. According to relevant previous 
esearch ( Bellon et al., 2007; Koschke, 2007; Rattan et al., 2013; 
oy et al., 2009 ), code clones can be categorized into the fol- 

owing 4 types: 

• Type-1: Exact clones. Code fragments are duplicated as is,
and completely identical. 

• Type-2: Renamed clones. Code fragments are syntacti- 
cally identical, but include modification of types, identi- 
fiers, comments, and whitespace. 

• Type-3: Restructured clones. The structure of the cloned 

code fragment is modified (e.g., removal, insertion, or rear- 
rangement of statements). For example, if an unnecessary 
statement that declares an unused variable is removed 

from a cloned code, it would be a Type-3 code clone. 
• Type-4: Semantic clones. Code fragments are functionally 

identical, but are syntactically different. 

VUDDY is devised for detecting code clones which are se- 
urity vulnerabilities. Specifically, its goal is to promptly and 

ccurately discover the code clones between a corpus of vul- 
erable code and a target program. To achieve that goal, we 
esigned VUDDY to be able to detect Type-1 and Type-2 clones 
ecause of the following three reasons: 

1. Reducing false negatives : By detecting Type-1 and Type-2 
clones, VUDDY becomes resilient to minor code changes 
that frequently occur. In other words, VUDDY is able to 
detect exact clones of vulnerability, as well as clones in 

which variable names, identifiers, data types, comments,
and whitespace are modified. Namely, VUDDY can prevent 
any vulnerability that is in the database (i.e., the collection 

of vulnerable code), and the variants of these vulnerabili- 
ties. This is further addressed in subsection 2.4 , and the ex- 
amples of such vulnerable clones can be found in section 4 .

2. Reducing false positives : Type-3 and Type-4 code clones are 
deliberately excluded from the scope of VUDDY, because 
they are subjective to the loss of syntactic information 

which are crucial for a vulnerability to be triggered. We 
can observe numerous cases where security vulnerabili- 
ties are very sensitive to the order of statements and con- 
stants. For example, a severe vulnerability that allows re- 
mote code execution attacks from the attackers can be 
patched by adding one sentence that sanitizes an input.
In case of CVE-2012-0876, a hash DoS vulnerability found 

in Expat XML parsing library, the problematic function was 
patched by changing a constant value 0 to a salt variable.
VUDDY can distinguish unpatched (vulnerable) code from 

patched code. 
3. Increasing scalability : Analyzing semantics for determin- 

ing the equivalence of code is time-consuming and error- 
prone. However, a typical parsing is enough for the recog- 
nition of the syntax and the detection of Type-1 and Type-2 
clones, which makes VUDDY lightweight and fast. 

.2. Code clone detector 

ig. 1 illustrates the overall stages and substeps of VUDDY.
UDDY preprocesses a target program and generates a finger- 
rint dictionary. And then, it detects code clones by comparing 
wo or more fingerprint dictionaries. By generating a finger- 
rint dictionary consisting of vulnerable functions, and com- 
aring that dictionary with a dictionary generated from target 
rogram, VUDDY will disclose vulnerable code clones in the 
arget program. 

.2.1. Preprocessing 
1: Function retrieval. The Preprocessing stage begins by re- 
rieving functions from a given program by using a robust 
arser. VUDDY then performs a syntax analysis to identify for- 
al parameters, data types in use, local variables, and func- 

ion calls. This supplementary information is used in the next 
tage: abstraction and normalization. 

S2: Abstraction and normalization. In this stage, an ab- 
traction and normalization feature is offered. To make 
UDDY resilient to common code modifications while pre- 
erving vulnerable condition, every occurrence of formal pa- 
ameters, local variables, data types, and function calls that 
ppear in the body of a function is replaced with symbols 
PARAM, LVAR, DTYPE, and FUNCCALL, respectively. The body 
s then normalized by removing every comment, whitespace,
ab, and line feed character, and by converting all charac- 
ers into lowercase. After applying abstraction and normaliza- 
ion, VUDDY is not affected by any syntactically meaningless 

odifications (e.g., function inlining, or adding comments).
oreover, VUDDY can capture changes in function calls and 

https://iotcube.net/
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Fig. 2 – Level-by-level application of abstraction schemes on 

a sample function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 – Example functions and corresponding fingerprints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 – A dictionary that stores the fingerprints of the 
example functions. A set containing two hash values is 
mapped to the key 20, which is the length value, and 

another set is mapped to the key 23. 
shared APIs, which are typical causes of recurring vulnerabil-
ities ( Yamaguchi et al., 2012; Zhang et al., 2014 ). Fig. 2 shows
the transformation of a sample function at varying abstraction
levels. Here, higher levels of abstraction include subordinate
levels. 

S3: Fingerprint generation. VUDDY generates fingerprints
for the retrieved function bodies that are abstracted and nor-
malized. A fingerprint of a function is represented as a 2-tuple
where the length of the normalized function body string be-
comes one element, and the hash value of the string becomes
the other. Fig. 3 shows the fingerprinting of example functions.

After fingerprinting, VUDDY stores the tuples in a dictio-
nary that maps keys to values, where the length values (i.e.,
the first element of a tuple) are keys, and the hash values that
share the same key are mapped to each key. Fig. 4 shows how
the example functions of Fig. 3 are classified and stored in a
dictionary. 
In the dictionary shown in Fig. 4 , the two functions in
Fig. 3 (sum and increment) are classified under the same inte-
ger key, because the length of their abstracted and normalized
bodies is identical as 20. The fingerprint of the other function
(printer) is assigned to another key, 23, in the dictionary. In
practice, we ignore functions of which the lengths are shorter
than 50, to prevent VUDDY from identifying short functions
as clones. Intuitively, short functions are hardly vulnerable by
themselves. 

2.2.2. Clone detection 

After two identical functions are preprocessed, they are re-
quired to have the same lengths even if variables are renamed
and comments are changed. Leveraging that fact, VUDDY de-
tects code clones between two programs by performing at
most two membership tests for each length-classified finger-
print dictionary: a key lookup, and a subsequent hash lookup.

S4: Key lookup. VUDDY performs the first membership
testing, by iterating over every key in a source dictionary, and
looking for the existence of the key (i.e., the length of the pre-
processed function) in the target fingerprint dictionary. If the
key lookup fails, then VUDDY concludes that there is no clone
in the target program. If it succeeds to find the existence of the
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Table 1 – Number of CVEs automatically collected from 

each Git or SVN repositories. 

Type Repository Name # CVEs 

Operating system Codeaurora Android 1966 
OpenSUSE kernel 701 
Google Android 418 
Ubuntu-Trusty 324 
FreeBSD 244 
Linux kernel 185 

Database server PostgreSQL 55 
MySQL 1 

Web server & browser Google Chromium 1145 
ChakraCore 62 
Apache HTTPD 57 
Gecko 6 
Nginx 2 

Library, protocol, 
language, others 

OpenSSL 117 
Kerberos5 72 
PHP 36 
GlibC 35 
BotanTLS 10 
389 Directory Server 9 
PCRE 5 
Wireshark 3 
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ame integer key, then VUDDY proceeds to the next substep: 
ash lookup. 

S5: Hash lookup. As a last substep of clone detection,
UDDY searches for the presence of the hash value in the set 
apped to the integer key. If the hash value is discovered, then 

he function is considered to be a clone. For example, when 

omparing dictionary A and B, VUDDY iterates S4 over every 
ey in dictionary A, searching for the key in dictionary B. For 
ach key shared by dictionary A and B, VUDDY performs S5 to 
etrieve all shared hash values, which are the clones we are 
ooking for. 

The design of VUDDY accelerates the process of clone 
earching by taking advantage of the following three facts: 

a. The time complexity of an operation that checks the exis- 
tence of a value from a set of unique elements is O (1) on 

average, and O ( n ) in the worst case, where n is the number
of elements in a set. 

b. It is guaranteed that even in the worst case, n is small be- 
cause of the length classification. For example, the finger- 
print dictionary of Linux kernel 4.7.6 (23 K files with over 
15.4 MLoC) only contains 5245 integer keys, and among the 
hash sets associated to the keys, the largest set has 1019 el- 
ements. The average number of elements of the hash sets 
is 67.85, the median is 5, and the mode (the value that oc- 
curs most often) is 1. This implies that most of the hash set 
will have only one element. 

c. Once the preprocessing is complete, the resulting finger- 
print dictionary can be permanently reused, unless some 
portion of the program is changed. This efficient design en- 
ables VUDDY to perform a real-time clone detection. 

.3. Establishing a vulnerability database 

 reliable dictionary of vulnerable functions is a prerequisite 
or accurate vulnerable code clone detection. To obtain vari- 
us vulnerable functions, we leveraged the Git repositories of 
ell-known authoritative open source projects, and Subver- 

ion (SVN) repositories of widely-used software libraries. The 
epositories are shown in Table 1 . 

The process of collecting vulnerable code and establish- 
ng a vulnerability database is fully automated, which can be 
onsidered as the process of reverse patching: from security 
atches we reconstruct the unpatched, vulnerable function.
he process of reconstructing vulnerable functions from Git 
r SVN repositories consists of the following steps: 

a. git clone repository. This is to download specified git 
repository into a local directory. For SVN repositories, use 
“git svn clone repository” command instead, which 

clones an SVN repository and then converts it into a Git 
repository. 

b. git log --grep = ‘‘ CVE-20’’ for each repository.
This searches for the commits regarding Common Vulner- 
ability and Exposures (CVEs). Other general keywords such 

as “buffer overflow” or “heartbleed vulnerability” instead of 
“CVE-20” work as well. 

c. git show the searched commits. This command shows 
the full commit log which contains a description of the vul- 
nerability, as well as a security patch in unified diff format.
Every patch includes reference IDs to the old and new files 
addressed by the patch. 

d. Filter irrelevant commits. The steps listed could fetch com- 
mits that are inappropriate for vulnerability detection.
For example, some commits have the keyword “CVE-20”
in their message, which is actually “Revert the patch for 
CVE-20XX-XXXX.” Merging commits or updating commits 
which usually puts all the messages of associated commits 
together is another problem, particularly if one of the com- 
mits happens to be a CVE patch. In such cases, our auto- 
mated approach would end up retrieving a benign func- 
tion. Thus, commits which revert, merge, or update are dis- 
carded in this step. 

e. git show the old file ID and retrieve vulnerable function.
This shows the old, thus unpatched version of the file. We 
then retrieve the vulnerable function from the file. 

Listing 1 is the patch for CVE-2013-4312, found in the 
odeaurora Android repository. This patch adds lines 9 and 

0 to ensure that the per-user amount of pages allocated in 

ipes is limited so that the system can be protected against 
emory abuse. The file metadata in line 2 indicates the ref- 

rences to the old file ( d2cbeff ) and the new file ( 19078bd ),
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and line 5 conveys information about the line numbers of the
affected portion in the file. 

We could retrieve the old function, namely the vulnerable
version of the function, by querying “git show d2cbeff ” to
the cloned Git object, obtaining the old file, and parsing the
relevant function. Listing 2 is the retrieved vulnerable func-
tion, which includes both the vulnerable part, and the context
around it. 

Our automated system collected 11,146 vulnerable func-
tions which correspond to 3551 unique CVEs and 38 CWEs.
These vulnerable functions include various types of vulner-
ability, such as buffer overflow, integer overflow, input valida-
tion error, permission-related vulnerabilities, and others. 

2.4. Vulnerable code clone detection 

The application of VUDDY for vulnerability detection does not
require any supplementary procedure. VUDDY processes the
functions in the vulnerability database in the same way as it
does with a normal program, then discovers vulnerability in
the target program by detecting code clones between the vul-
nerability database and the target program. 

Here, we can determine which vulnerability VUDDY is ca-
pable of discovering. As illustrated in Fig. 5 (a), if set K is the
set of every known vulnerability, then K ⊂ V where V is the
set consisting of all vulnerabilities. Naturally, we can regard
U , the set of unknown vulnerabilities, and K as being dis-
joint, so that K ∪ U = V and K ∩ U = φ. If a clone detector
only considers exact clones (i.e., code fragments that are du-
plicated without any change), then the coverage is K . How-
ever, by the use of our abstraction strategy, the coverage of an
abstract clone detector can also cover vulnerabilities in K 

′ as
depicted in Fig. 5 (b), which is a set of abstract vulnerabilities.
This means that VUDDY can detect known vulnerabilities, as
well as variants of the known vulnerabilities, which are in K 

′ ,
where | K 

′ ∩U | > 0 . K 

′ ∩U is the set of unknown vulnerable code
clones discovered by VUDDY. 

The source code and implementation of VUDDY are avail-
able online at https://github.com/squizz617/vuddy. 
Fig. 5 – Relationship between known, unknown and 

variants of known vulnerabilities. 

 

 

 

 

 

 

 

 

 

3. Theoretical evaluation 

In this section we evaluate the scalability and accuracy of
VUDDY, by comparing VUDDY against four publicly available
and competitive techniques: SourcererCC, ReDeBug, Deckard,
and CCFinderX. 

3.1. Experimental setup and dataset 

System environment: We evaluated the execution and detec-
tion performance of VUDDY by conducting experiments on a
machine running Ubuntu 16.04, with a 2.40 GHz Intel Zeon
processor, 32 GB RAM, and 6 TB HDD. 

Dataset: We collected our target C/C++ programs from
GitHub. These programs had at least one star and were pushed
at least once during the period from January 1, 2016 to July 28,
2016. Repositories that are starred (i.e., bookmarked by GitHub
users) are popular and influential repositories. The existence
of a push record during the first half of 2016 implies that the
repository is active. The repository cloning process required 7
weeks to finish, gathering 25,253 Git repositories which sat-
isfy the aforementioned two conditions. In addition to the
GitHub projects, we downloaded the firmware of several An-
droid smartphones from the web pages of the manufacturers.

Configuration: The configuration choices can have a sig-
nificant impact on the behavior of the tools that are com-
pared ( Wang et al., 2013 ). As a remedy, we referenced the opti-
mal configuration of each technique found by previous studies
( Svajlenko and Roy, 2014, 2015; Wang et al., 2013; Sajnani et al.,
2016 ) to conduct a sufficiently fair evaluation. 

3.2. Scalability evaluation 

To measure the scalability of tools when handling real-world
programs, we generated target sets of varying sizes, from 1
KLoC to 1 BLoC, by randomly selecting projects from the 25,253
Git projects we collected. All experiments were iterated five
times each (except for SourcererCC, with which we iterated
twice), to ensure that the results are reliable. 

As described in Table 2 , VUDDY (using function-level gran-
ularity) overwhelmed other techniques. Excluding Deckard,
the results accord perfectly with an intuition that finer gran-
ularity leads to bad scalability. Deckard (using AST as gran-
ularity) had the least scalability, failing to process 100 MLoC
target because of a memory error. Its low scalability can be
attributed to the fundamental limitation of subgraph isomor-
phism problem, which is heavy and time-consuming. In the
case of CCFinderX (using token-level granularity), a file I/O er-
ror occurred after 3 days of execution for a 1 BLoC target. Token
is the smallest unit, meanwhile, VUDDY finished generating
fingerprints and detecting clones of the 1 BLoC target in only
14 hours and 17 minutes. Although SourcererCC (using bag-
of-tokens as granularity) and ReDeBug (using lines as gran-
ularity) also scaled to 1 BLoC, their execution is considerably
slower than that of VUDDY. ReDeBug required more than a day,
and SourcererCC required 25 days to finish detecting clones
from the same 1 BLoC target. In fact, owing to the function-
level granularity and the efficient matching algorithm, VUDDY
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Table 2 – Scalability and time comparison for varying input size. The average time was computed after iterating five times 
for each experiment. Units in the parentheses indicate the granularity of each tool. 

Input LoC VUDDY (Function) ReDeBug (Lines) SourcererCC (Bag-of-words) CCFinderX (Tokens) Deckard (AST) 

1 K 0.44 s 35.6 s 2.3 s 6 s 1 s 
10 K 0.81 s 35.6 s 3.1 s 10 s 3 s 
100 K 5.17 s 42 s 50.7 s 50 s 13 s 
1 M 55 s 1 m 43 s 1 m 44 s 6 m 44 s 2 m 20 s 
10 M 12 m 43 s 18 m 32 s 24 m 38 s 1 h 36 m 12h 30 m 

100 M 1 h 32 m 2 h 32 m 9 h 42 m 12 h 44 m Memory ERROR 
1 B 14 h 17 m 1 d 3 h 25 d 3 h File I/O ERROR –
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cales even to the size of all 25,253 repositories consisting of 
.7 BLoC with ease, requiring only 4 days and 7 hours. 

In addition, we conducted an in-depth comparison of 
UDDY with ReDeBug, which is the most scalable approach 

mong the four techniques that are compared. When query- 
ng 10,469 vulnerable functions targeting an Android firmware 
14.9 MLoC, using kernel version 3.18.14), VUDDY required 

024 seconds, while ReDeBug required 1695 seconds. In fact,
UDDY required 1023 seconds (99.9%) for preprocessing and 

or the fingerprint generation procedure, and the actual code 
lone detection required only 1.04 seconds, as illustrated in 

ig. 6 . Note that once the preprocessing is complete, VUDDY 

oes not need to regenerate the fingerprint dictionary for ev- 
ry clone detection. This is not the case for ReDeBug. When 

xecuted, ReDeBug required 676 seconds and 1019 seconds for 
reprocessing and clone detection, respectively. 

Fig. 7 displays a graph depicting the clone detection time 
f VUDDY and ReDeBug when varying size of target programs 

1 KLoC to 1 BLoC) were given. The clone detection time of 
UDDY is near-constant (approximately 1 second), while that 
f ReDeBug grows linearly with the size of target. Thus, we 
an conclude that VUDDY detects vulnerable code clones at 
 speed more than 10 times faster than ReDeBug, in practice,
nd this gap increases as target size grows. 

.3. Accuracy evaluation 

ow we evaluate the accuracy of VUDDY by comparing the 
umber of false positives produced by each tool, given a set of 
ig. 6 – Preprocessing and clone detection time of VUDDY 

nd ReDeBug, targeting Android firmware (14.86 MLoC, 
49 K functions). 

F
v

ulnerabilities and a target program. First, we focus on com- 
aring the accuracy of VUDDY against SourcererCC, Deckard,
nd CCFinderX, which are not aimed at detecting “vulnerable”
lones, and thus are not accurate when finding security vul- 
erabilities. After that, we will compare VUDDY with ReDeBug,
hich is designed for detecting vulnerable code clones. 

To evaluate accuracy on the most equitable basis possi- 
le, we decided to conduct clone detection using each tech- 
ique, then manually inspect every reported clone. The re- 
ult of clone detection between our vulnerability database and 

pache HTTPD 2.4.23 (352 KLoC) is shown in Table 3 . As it is
ery challenging to find literally every vulnerability (includ- 
ng unknown vulnerabilities) in the target program, we can- 
ot easily determine false negatives of tested techniques. To 
e clear, values of the FN column in Table 3 only account for
ig. 7 – Clone detection time of VUDDY and ReDeBug, when 

arying size of target programs are given. 

Table 3 – Accuracy of VUDDY, SourcererCC, Deckard, and 

CCFinderX when detecting clones between the vulnera- 
bility database and Apache HTTPD 2.4.23. Time is mea- 
sured in seconds. 

Technique Time Rep 

† TP FP FN Prec Rec 

VUDDY 22 9 9 0 2 1 .00 0 .82 
SourcererCC (1.0) ∗ 122 1 1 0 8 1 .00 0 .11 
CCFinderX 1201 74 11 63 1 0 .15 0 .92 
Deckard (1.0) ∗ 58 57 3 54 8 0 .05 0 .27 
SourcererCC (0.7) ∗ 125 56 2 54 7 0 .04 0 .22 
Deckard (0.85) ∗ 234 462 4 458 8 0 .01 0 .33 

∗ The values between parentheses denote minimum similarity 
threshold configuration. 

† Denotes the number of clones each technique reported. 
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Table 4 – Accuracy comparison of VUDDY and ReDeBug, 
targeting Android firmware (14.86 MLoC, 349 K functions). 

VUDDY ReDeBug 

# initial reports 206 2090 
# multiple counts 0 1845 
# unique clones 206 245 
# false positives 0 43 
# end result 206 202 
# unique findings 25 21 
# common findings 181 
indisputable false negatives. For example, FN of VUDDY is the
number of code clones detected by the other techniques that
are not false positives, but not detected by VUDDY. 

VUDDY reported 9 code clones in 22 seconds, and all of the
findings were unpatched vulnerable clones in Apache HTTPD
2.4.23. This result indicates that function-level granularity
and code abstraction have a positive effect on the accuracy
of VUDDY. However, SourcererCC with 100% similarity set-
ting also had precision of 1.0, but reported only one true
positive case. It missed 8 vulnerable clones which VUDDY
detected, because of its filtering heuristics. We lowered
the minimum similarity threshold to 70%, expecting that
SourcererCC might detect more true positive cases. However,
it ended up detecting only two legitimate vulnerable clones,
whereas introducing 54 false positives. The granularity unit
of SourcererCC (i.e., bag-of-tokens) is too fine to be utilized
for vulnerable code clone detection. Deckard with minimum
similarity set to 100% reported 57 clones, and 54 cases were
confirmed to be false positives. This shows that two perfectly
matching abstract syntax trees (ASTs) are not necessarily
generated from the same code fragments. Furthermore, when
the minimum similarity threshold was set to 85%, Deckard
detected only 4 true positive clones, with 458 false posi-
tives. This result accords with the observation of Jiang et al.
(2007a) which claims that Deckard has 90% false positive.
CCFinderX was the only technique that reported more true
positive cases than those of VUDDY. This is because it takes
advantage of a token-level granularity, which is the finest unit.
However, 63 out of 74 reported clones were false positives,
and CCFinderX required the most time to complete. 

We analyzed the false positive cases of each tool, and dis-
covered a fatal flaw of the compared techniques. In most of
the false positive cases, SourcererCC, Deckard, and CCFinderX
falsely identified patched functions in the target as clones of
unpatched functions in the vulnerability database. We present
one case in which patched benign function is identified as a
clone of old, vulnerable version of the function, by all tech-
niques but VUDDY. In Listing 3, we can observe that the state-
ments removed and added by the patch are very similar. Even-
tually, the unpatched function and patched function have so
similar structure and tokens that SourcererCC, Deckard, and
CCFinderX misleadingly report them as a clone pair. 

We also analyzed the false negative cases. VUDDY did not
detect two vulnerable functions that both SourcererCC (70%
similarity threshold) and Deckard detected. The sole reason
is that some lines of code, other than the vulnerable spot ad-
dressed by security patches, were modified in the function. We
currently have vulnerable functions of the repository snap-
shots right before the security patches are applied. However,
this is a trivial issue that can be easily resolved, because we
can retrieve every different versions of a vulnerable function
and add them in our database. For example, a command “git
log -p filename ” retrieves the entire change history of the
queried file. Older snapshots of vulnerable functions are nat-
urally obtained from the change history, and we can insert
these into our vulnerability database. From a different stand-
point, it is very surprising that SourcererCC and Deckard have
more false negatives than VUDDY has. For these cases they
failed to identify two identical functions as clones, implying
that these techniques are not complete. 

In summary, although Apache HTTPD is a moderately-
sized project consisting of 350 KLoC, a lot of false positive
cases are reported by techniques other than VUDDY. It is only
logical that the bigger a target program is, the more false
alarms are generated. Therefore, we confidently conclude that
SourcererCC, Deckard, and CCFinderX are not suitable for de-
tecting vulnerable clones from large code bases, as they will
report so many false positive cases which cannot be handled
by restricted manpower. Moreover, SourcererCC and Deckard
had more false negatives than VUDDY had. 

In contrast to SourcererCC, Deckard, and CCFinderX that
solely aim for detecting any code clones and thus are not ac-
curate when finding security vulnerabilities, ReDeBug is de-
signed for detecting vulnerable code clones. Thus, we again
conducted an in-depth comparison of VUDDY and ReDeBug
in terms of accuracy. 

False positive: VUDDY overwhelms ReDeBug with decisive
margin, with respect to accuracy. As shown in Table 4 , no
false positive was reported by VUDDY. However, we conducted
a manual inspection for 12 hours with 2090 code clones re-
ported by ReDeBug to find that 1845 (88.3%) of these code
clones were duplicates, because ReDeBug counts the number
of CVE patches rather than the number of unpatched spots
in the target code. After removing duplication, the number of
clones reduced to 245. Then, we were able to find 43 (17.6%)
false positives among the 245 unique code clones through a
further inspection. The false positive cases were attributed to
two causes: ReDeBug is language agnostic, and there is a tech-
nical limitation in their approach. 

The language agnostic nature of ReDeBug causes the tech-
nique to find code clones of trivial patches (i.e., hardly related
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o vulnerability), such as patches that modify macro state- 
ents, structs, and header inclusion or exclusion. For exam- 

le, the patch for CVE-2013-0231 adds header inclusion state- 
ents to the beginning of pciback_ops.c in the xen driver 

f Linux kernel. The patch for CVE-2015-5257 adds an initial- 
zation statement of a struct member variable. Although Re- 
eBug found and reported that these patches are not applied 

n the Android smartphone, these unpatched codes cannot be 
ulnerabilities. On the other hand our mechanism targets only 
he functions, and therefore refrains from reporting such triv- 
al code clones. 

ReDeBug also has a technical limitation that contributes to 
he false positives. When ReDeBug processes the patches, it 
xcludes the lines prefixed by a “+” symbol to obtain the orig- 
nal buggy code snippet, and then removes curly braces, re- 
undant whitespaces and comments from the snippet. When 

earching for the snippet in the target source code, the lack 
f context leads to false positives. For example, ReDeBug re- 
orted a benign function in xenbus.c as an unpatched vul- 
erability, where the patch actually adds a line of comment 

o the original source code without making any significant 
hanges to other lines of code. Even worse, ReDeBug erro- 
eously detected the nr_recvmsg function shown in Listing 
, although the corresponding patch in Listing 5 is already ap- 
lied. In this case, the sequence of lines 3, 6, 8, and 9 in the
atch exactly matches lines 3, 4, 6, and 7 of the function in 

isting 4 after preprocessing. This example reveals the limi- 
ation of a line-level granularity, responsible for causing false 
ositives. 

False negative: Table 4 shows the number of unique find- 
ngs of VUDDY and ReDeBug, which represent the false nega- 
ives of each other. In terms of false negatives, VUDDY and Re- 
eBug are complementary. Owing to the abstraction, VUDDY 

as able to find 25 vulnerable code clones in which data types,
arameters, variable names, and function’s names were modi- 
ed. However, ReDeBug was not resilient to such changes. One 
f the cases is the function in Listing 7, which should have 
een patched by Listing 6 but not. While the security patch 
s
s not applied, a const qualifier is inserted in line 1 of List-
ng 7. ReDeBug tries to detect the window consisting of lines 
 to 6, and fails because of const . However, VUDDY is capa-
le of detecting such variant of vulnerable function because 
oth const wlc_ssid_ and wlc_ssid_t are replaced with 

TYPE after applying abstraction. 

The 21 cases VUDDY missed but ReDeBug detected re- 
ulted from the aforementioned reason: ReDeBug detected 

npatched functions even if lines other than security patch 

ddresses were modified, because it utilizes a line-level gran- 
larity. However, we emphasize again that these cases can be 
etected by VUDDY if we reinforce our vulnerability database 
y adding older snapshots of vulnerable functions. 

After examining the wide discrepancies in speed and accu- 
acy between VUDDY and ReDeBug, we concluded that VUDDY 

elivers results that are much more precise and accomplishes 
his with faster speed. 

.4. Exact-matching vs abstract matching 

ur abstraction scheme enables VUDDY to detect variants 
f known vulnerabilities. We tested VUDDY with an Android 

rmware (14.9 MLoC). VUDDY reported 166 vulnerable clones 
ithout abstraction and 206 clones with abstraction. This 
eans that VUDDY detects 24% more clones with abstraction,
hich are unknown vulnerabilities. We manually inspected 

he clones, and identified no false positive. 

. Empirical evaluation: Case study 

n practice, a lot of software systems clone code from other 
oftware, and are exposed to vulnerabilities. Taking advantage 
f the scalability and accuracy of VUDDY, we were able to in- 
estigate a wide range of software projects. In this section, we 
mpirically evaluate the utility of VUDDY by introducing var- 
ous real-world software systems detected by VUDDY which 

re affected by cloned old vulnerabilities. Moreover, we ana- 
yze the root cause and draw an important insight that cloned 

ulnerabilities require a considerable amount of time to be 
atched, and this time lag is expanding the possible attack 
urface of various software systems. 
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According to the scale and cause of clones, we classify
clone-induced vulnerabilities into the following three cate-
gories: 

• Kernel clone cases, 
• Library clone cases, and 

• Intra-project clone cases. 

4.1. Kernel clone cases 

Linux kernel is one of the oldest and biggest open source
projects. Its widespread use spans to a number of OS distri-
butions such as Ubuntu, Debian, and recently, a lot of IoT and
mobile devices adopt Linux kernel as a basis of their operating
systems. 

An important characteristic of the cases in which the ker-
nel is reused, is that the reused kernel usually lags behind the
latest kernel. This is very prevalent in the ecology of IoT de-
vices including Android smartphones, Tizen appliances, and
Linux-oriented operating systems. We observed that it often
requires at least half a year to develop an operating system
on the basis of a certain version of Linux kernel, which even-
tually leaves the end products (e.g., the IoT devices, OS distri-
butions, and smart appliances running the Tizen OS) subject
to the vulnerabilities which are reported during the period of
development. In other words, kernel-based devices inevitably
lag behind the patching efforts of Linux kernel developers, or
a number of open source project participants. 

We focused our analysis on Android smartphones which
take a majority of market share in 2016 and 2017: Smartphone
A and Smartphone B.1 VUDDY detected several kernel vulner-
abilities from these smartphones, and some are patched after
we reported these vulnerabilities to the manufacturers. Our
major findings of kernel clone cases are as follows: 

• CVE-2016-5195 from Smartphone A: Race condition al-
lowed read and write of files without permission. Actual
device exploited. 

• CVE-2017-7472 from Smartphone A and B: Memory leak
vulnerability caused kernel panic. Actual device exploited.

• CVE-2017-8266 from Smartphone B: Use-after-free bug
caused kernel panic. Actual device exploited. 

CVE-2016-5195 (Dirty COW) in Smartphone A. Dirty COW
vulnerability was once discovered and fixed by a Linux kernel
developer in 2005, but its fix was reverted, thereby nullifying
the initial fix. VUDDY detected the vulnerable clone of Dirty
COW in the unpatched, up-to-date firmware (at the time) of
Smartphone A, and we successfully exploited the vulnerable
clone to gain root privilege of the smartphone. If VUDDY had
been employed to find known old vulnerabilities before the af-
fected kernels were released, Linux could have prevented such
brutal vulnerability from being propagated through a num-
ber of OS distributions including the one shipped with Smart-
phone A which hold more than half of the market share at the
time. 
1 Names of the smartphones are anonymized because of legal 
issues. 
CVE-2017-7472 in Smartphone A and B. CVE-2017-7472 is
a memory leak vulnerability which affects Linux kernels be-
fore 4.0.13. Although the patch was released in April 2017,
VUDDY found that the vulnerability still resides in the latest
firmware of both smartphones. The aforementioned problem
of time difference between kernel release and smartphone re-
lease can be found in this case, as well: the kernel versions in
these smartphones are 3.18.20 (released in August 2015) and
3.18.14 (released in May 2015), respectively. To make things
worse, the exploit for this vulnerability is open to the public
in Metasploit DB, and it only has two lines of code in its main
function (see Listing 8). By running this simple PoC code, we
readily triggered a kernel crash in both phones and verified
that this vulnerability is able to affect the real up-to-date de-
vices. 

CVE-2017-8266 in Smartphone B. Another vulnerability
found in Smartphone B is a use-after-free bug triggered by a
race condition. This case is slightly different from the previous
case, because the origin of the vulnerability is not the original
Linux kernel, but the Qualcomm’s Android for MSM project. 

Patch for this vulnerability adds two lines which locks and
unlocks mutex respectively, before and after freeing a memory
block. Although half a year has passed since this simple patch
was applied to the MSM kernel by Codeaurora, Smartphone B
is still vulnerable. The PoC is available at GitHub repository of
the person who reported the vulnerability, and we were able to
make Smartphone B’s kernel crash with the PoC that triggers
a race condition. 

Fig. 8 illustrates a typical multiple-step code cloning case,
of Smartphone A. We can observe that the kernel is 1 year and
8 months behind the release of the firmware. Device manufac-
turers have to be aware of this temporal discrepancy, and try to
Fig. 8 – Multiple-step code cloning: Linux kernel, Android 

OS, and smartphone firmware. 
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Fig. 9 – Temporal relationship between various versions of 
PCRE and MongoDB. Each dotted horizontal line makes a 
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arrow the gap as much as possible. Prompt update is a must,
nd in some cases where update is not a viable solution (e.g.,
e cannot replace an old kernel with a latest one easily), de- 

elopers have to set up a channel for emergency patch release 
nd make sure every n-day vulnerability is patched. 

.2. Library clone cases 

n practice, library reuse takes place very frequently, as li- 
raries are meant to be reused. Any software, small or large,
an use libraries without much restriction. For example, the 
LC media player is an open source media player in which at 

east 90 third-party libraries (including very popular ones such 

s FFmpeg, FLAC, LAME, libmpeg2, and QT5) are used. Conse- 
uently, many projects are prone to a wide range of vulnera- 
ilities attributable to the outdated libraries they use. 

We can classify library reuse patterns into three: 1) Full- 
ource inclusion, 2) Dependency installation, and 3) Partial in- 
lusion. Our major findings of library clone cases include: 

• CVE-2016-3191 of PCRE library detetcted in MongoDB: 
Patched MongoDB was released 9 months after the patch 

had been released by the vendor of PCRE library. 
• CVE-2012-0876 of Expat library detected in Apache HTTPD: 

Sending a crafted packet to server caused DoS and made 
system unavailable. 

• CVE-2016-5161 and CVE-2016-5172 in SBrowser: Mobile 
web browser using an old chromium engine had serious 
vulnerabilities that could cause privacy issues. 

• CVE-2011-3048 of LibPNG detected in SBrowser: Browser 
cloned LibPNG old, vulnerable version which was 3 years 
and 9 months behind the latest version. 

.2.1. Database engines 
CRE in MongoDB. CVE-2016-3191 is a pattern-mishandling 
ulnerability in PCRE (Perl Compatible Regular Expressions) 
hich allows remote attackers to cause buffer overflow and 

xecute arbitrary code through crafted regular expressions.
ongoDB is the most widely-used NoSQL database engine. 

We can observe an important vulnerability patching proce- 
ure in PCRE and MongoDB. Initially, the patch for CVE-2016- 
191 was released on February 10, 2016. The patched version,
CRE 8.39, was officially released on June 14, 2016. And then,
he updated PCRE was integrated to MongoDB 3.0.13 on Oc- 
ober 31, 2016, and MongoDB 3.2.11 on November 18, 2016. In 

ther words, it required approximately 9 months for a bru- 
al vulnerability to be patched in one of the most popular 
atabase programs, even though its cause, effect, PoC (Proof 
f Concept) and the patch are disclosed to the public. 

In this sense, attackers do not have to put a lot of effort into 

ero-day vulnerability detection. They have more than half a 
ear to try exploiting popular software projects with already 
isclosed zero-day (i.e., n-day) vulnerabilities. 

Fig. 9 illustrates how much time is required for an update 
n PCRE to be applied in MongoDB. The primitive versions of 

ongoDB cloned PCRE 7.4, which was released in September 
007. Although PCRE had been updated several times (there 
ad been 15 official PCRE releases), the changes were not ap- 
lied to MongoDB until version 2.1.0 which was released in 

ebruary 2012. After four years of delayed update, MongoDB 
.1.1 was finally shipped with an updated PCRE (version 8.30,
eleased in February 2012). This delay is repeated in the later 
ersions of MongoDB. Even though PCRE 8.36 was released 

n September 2014, MongoDB kept using PCRE 8.30 until May 
015. Moreover, although the update was applied in MongoDB 

ersion 3.1.3 in May 2015, MongoDB 2.6.11 was released in Au- 
ust 2015 with old PCRE 8.30 rather than 8.36. This shows that 
ranches of software can have a bad influence on prompt up- 
ates of the libraries used, because of consistency and depen- 
ency issues. Afterwards, PCRE 8.38 had a three-month delay 

from November 2015 to February 2016) to be updated in Mon- 
oDB, and PCRE 8.39 had a two-month delay. PCRE 8.40 was 
ot even considered to be updated, and two months after the 

atest PCRE 8.41 was released, MongoDB updated its library in 

.5.13. 
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Fig. 10 – Single-step code cloning: LibPNG and SBrowser. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2. Web servers and browsers 
Expat library in Apache HTTP Server. In the Apache HTTP
server, VUDDY discovered a vulnerable code clone of CVE-
2012-0876, which eventually turned out to be a zero-day vul-
nerability. (Zero-day herein follows the typically accepted def-
inition: a vulnerability that is unknown to those who would be in-
terested in mitigating the vulnerability . Apache was not aware
that this vulnerability existed in their HTTP daemon, and we
could exploit this vulnerability to compromise the system.)
The versions before 2.4.25 (released in December 2016) are af-
fected. Apache HTTP server includes Apache Portable Runtime
(APR) project which provides several APIs. One of the features
Apache HTTP Server makes use of is the XML parser of the Ex-
pat library included in the APR project. Unfortunately, the ver-
sion in APR is outdated and is vulnerable to CVE-2012-0876, a
so-called Hash DoS attack. 

We could use a specially crafted XML file to trigger the
vulnerability, and force the Apache HTTP server daemon to
consume 100% of CPU resources. Listing 9 shows part of the
patches for CVE-2012-0876, and Listing 10 is an excerpt of the
vulnerable function in Apache HTTP server, which can be trig-
gered with a crafted packet to cause DoS. 

We reported this zero-day vulnerability, which could crit-
ically affect numerous web services that run Apache HTTP
server, and the Apache security team confirmed this vulnera-
bility. To resolve the problem, they took two measures. Firstly,
they excluded the source code of APR from the Apache HTTP
Server’s repository. In other words, they switched the library
reuse pattern from “Full-source inclusion” to “Dependency in-
stallation”, rather than integrating the upstream APR to their
source code. This would be expected to accelerate the process
of library updates. Secondly, they excluded Expat sources from
APR 1.6. 
WebKit and V8 vulnerabilities in SBrowser. Smartphones
manufactured by S-electronics are shipped with a built-
in web browser, named SBrowser. Like many other web
browsers, SBrowser is based on Google Chromium, an open
source browser project. Naturally, vulnerabilities in Chromium
project are propagated to SBrowser, and not being patched
even in the latest version (SBrowser 5.4.21.54, September
2017). 

One of the vulnerabilities is CVE-2016-5161, a type confu-
sion vulnerability in WebKit. To understand how this 1.5-year-
old vulnerability sneaked into the latest mobile browser, an
understanding of the genealogy of SBrowser is required. We-
bKit is Apple’s web browser engine used by a lot of browsers
including old Chrome. In 2013, Google forked WebKit to make
their own rendering engine, which is Blink. Chromium is pow-
ered by Blink, and SBrowser inherited this characteristic. We
successfully exploited CVE-2016-5161 in the SBrowser and
caused a denial of service. 

Another vulnerability is CVE-2016-5172, a scope-related
vulnerability in Google V8. VUDDY detected that this vulnera-
bility is not patched yet in SBrowser. By the use of PoC which is
already disclosed, we could make SBrowser crash, and hijack
its session information. 

A common characteristic of both of the vulnerabilities is
that, the PoC can be easily found on the web. In other words,
SBrowser has been exposed to vulnerabilities of which PoCs
are accessible through web for more than a year and a half. 

LibPNG in SBrowser. In September 2016, VUDDY detected
another old vulnerability, CVE-2011-3048, in the older ver-
sion (up-to-date at the time) of the SBrowser. The vulnera-
bility stemmed from the use of an outdated LibPNG library:
version 1.2.45, which was released in July 2011. VUDDY de-
tected that the fix for CVE-2011-3048 is not applied in that
version, leaving the browser vulnerable. We consider this case
to be very alarming because a vulnerability which had al-
ready been patched five years ago was still being distributed
through widely-used smartphones. After we reported this bug
to the manufacturers, they affirmed that they would con-
duct a dependency check and library update for the next re-
lease. Finally, this vulnerability was patched and the up-to-
date browser is using LibPNG 1.2.56, which patched the vul-
nerability. 

Fig. 10 depicts the single-step code cloning case of
SBrowser. A lot of instances of library reuse fall into the cat-
egory of single-step code cloning, where outdated versions of
libraries are included in the project. Software developers have
to carefully keep track of the libraries used in their projects
to avoid exposing their software to n-day vulnerabilities and
corresponding attacks. 

4.2.3. Others 
PCRE in Extempore. Extempore is a cyber-physical program-
ming environment. Its repository in GitHub has received 922
stars, and the project is very actively managed. However, the
version of the PCRE library it uses is still 8.38, which is vulner-
able to CVE-2016-3191. 
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Fig. 11 – Intra-project code cloning: Recurring Linux kernel 
vulnerability. 
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PCRE in WinMerge. WinMerge is a famous Windows tool 
or visual difference display and merging. Its latest release was 
ownloaded more than 33,000 times this week, and more than 

.1 million times since January 2017 to September 2017. In con- 
rast to its reputation, this program is also vulnerable to CVE- 
016-3191 because of the use of the outdated PCRE library. 

LibPNG in the Visualization Toolkit (VTK). VTK is a sys- 
em for 3D computer graphics, image processing, and visual- 
zation. VTK’s GitHub repository has received 696 stars, and 

s forked 457 times. However, VUDDY detected CVE-2015-8540 
CVSS 9.3) in the LibPNG 1.0.65 in VTK repository. By exploiting 
his underflow read bug via a crafted PNG image, we caused an 

ut-of-bounds read. 

.3. Intra-project code clone cases 

wing to our abstraction strategy, we detected an 8-year- 
ld vulnerability (CVE-2008-3528) which possibly is a zero- 
ay vulnerability, in the latest stable Linux kernel. Very in- 
erestingly, although the original vulnerability was found in 

xt2, ext3, and ext4 file systems of the kernel 2.6.26.5, and 

hen patched in 2008, the nilfs2 file system of which the im- 
lementation is very similar (but differs in relation to some 

dentifiers) to that of ext2 has remain unpatched to date 
see Fig. 11 ). The problematic function 

∗nilfs_dotdot is in 

inux/fs/nilfs2/dir.c . 

The function described in Listing 12 is suspected to be 
loned from the implementation of the ext2 file system, be- 
ause file systems share a considerable amount of similar 
haracteristics. Even though the name of the function called at 
ine 3 of Listing 12 is different from that of the original buggy 
unction ( ext2_get_page ) in Listing 11, this is detected by 
t  
UDDY because as described in section 2 , we abstract the 
unction calls by replacing the names of the called function 

ith FUNCCALL . 
The contents of function ext2_get_page and 

ilfs_get_page are also identical except for their names 
nd a few identifiers, and thus we attempted to trigger 
he vulnerability in Ubuntu 16.04 which is built upon ker- 
el version 4.4. Surprisingly, we could trigger the “printk 
oods” vulnerability which in turn causes denial of service,
y mounting a corrupted image of the nilfs2 file system. We 
ontacted a security officer of Redhat Linux, and he confirmed 

hat this vulnerability should be patched. This case shows 
hat VUDDY is capable of detecting unknown variants of 
nown vulnerability. 

.4. Lessons learned 

n this section we summarize and discuss the lessons learned 

rom the case studies. As seen in the cases of the real-world 

ulnerable code clones, attack vector lies in a majority of pro- 
rams that clone code from other software. 

• A considerable number of old vulnerabilities tend to re- 
main unpatched in the software systems that contain any 
kind of code clones (e.g., kernel clone, library clone, or 
intra-project clone). In general, these vulnerabilities live for 
0.5–1.5 year, but some software have older vulnerabilities 
which are more than 3 years old. 

• The cloned old vulnerabilities can be easily triggered by 
known exploits, and can cause severe damage. 

• Patching the old vulnerabilities is challenging especially 
when multiple parties are involved in the clone chain. In 

addition, it is very hard to manually manage patches for 
every cloned component (e.g., software libraries). 

• An automated analysis system is required to detect and 

handle these vulnerabilities. VUDDY is a system that max- 
imized the scalability and accuracy. 

. Application: IoTcube 

UDDY has been serviced online for free (at IoTcube ( Kim 

t al., 2017b ), https://iotcube.net , Fig. 12 ) since April 2016, fa-
ilitating scalable and accurate inspection of software. Users 
f our service include commercial software developers, open 

ource committers, and IoT device manufacturers. Please note 
hat all the findings presented in the case study of section 4 are
elected from the results gathered from the IoTcube system.
mark ( Fig. 13 ) is the implementation of VUDDY, which pre- 
rocesses a target program and generates an index file. When 

 user uploads the generated index file to IoTcube, it shows 
he result. 

The result page includes the number of detected vulner- 
ble functions and CVEs ( Fig. 14 ), the original repositories 
f the clones ( Fig. 15 ), yearly distributions of CVEs ( Fig. 16 ),
WE (Common Weakness Enumeration) distribution ( Fig. 17 ),
VSS (Common Vulnerability Scoring System) score distribu- 

ion ( Fig. 18 ), and a tree view with which users are able to lo-
ate the files affected by vulnerable clones. Using the informa- 
ion provided in the tree view ( Fig. 19 ) users are able to patch

https://iotcube.net
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Fig. 12 – The main page of IoTcube. Vulnerable code clone 
detection is under the Whitebox Testing menu. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 – Result page on IoTcube. When an index file of a 
smartphone firmware is uploaded, IoTcube detected 418 
vulnerable code clones. 

Fig. 15 – The origin of vulnerabilities. Vulnerabilities already 

reported and patched at Chromium, FFMpeg, LibTiff, and so 

on are detected in the mobile web browser application. 
the vulnerabilities, or report to the manufacturers for official
actions. 

Since the release of IoTcube in April 2016, 22 BLoC have
been queried. VUDDY detected 279 K vulnerable code clones
which include the cases described in section 4. CVE-2015-
2695, a high-severity vulnerability in Kerberos5, was detected
the most, and CWE-119 (Improper Restriction of Operations
within the Bounds of a Memory Buffer), CWE-264 (Permis-
sions, Privileges, and Access Controls), and CWE-377 (Insecure
Temporary File) were the top three CWEs. 

IoTcube is making a real impact on the world. One of the
device manufacturers integrated IoTcube into its software de-
velopment process to manage the vulnerabilities detected in
its devices. Whenever a developer commits a code, the code
is checked by VUDDY engine. If a vulnerability is detected, the
code is automatically rejected by the system. Through such
application, the manufacturer is preventing an accumulation
of vulnerabilities. 
Fig. 13 – The preprocessor, called hmark . hmark 
preprocesses target program and generates an index file. 

Fig. 16 – Yearly distribution of CVEs. As the tested browser 
application uses Chromium which was released in May 

2015, many of the vulnerabilities exposed in 2016 and 2017 
are not patched yet. 
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ig. 17 – The distribution of CWEs. CWE-119 (memory buffer 
elated vulnerability) is dominant in the browser 
pplication. 

ig. 18 – The distribution of CVSS. Over 74% of the detected 

VEs are assigned with high severity score. 
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ig. 19 – A tree view. Detailed information regarding the paths to 

atches is provided. 
. Discussion 

.1. Detecting semantic clones 

dentifying semantic clones (i.e., the code fragments that are 
yntactically different but perform the same functionalities) 
s a complicated task that requires an in-depth scrutiny of 
 code or a binary object, and thus it is beyond the scope of
his paper. For example, BLEX ( Egele et al., 2014 ) measures the
imilarity score of two functions by dynamically instrument- 
ng them under various environments (e.g., concrete values of 
he registers). As most dynamic approaches do, BLEX suffers 
rom a low scalability, requiring 30 CPU minutes for measur- 
ng similarity of two versions of ls utility. Esh ( David et al.,
016 ) performs static analysis to determine the similarity of 
inaries. Although scalability is not a big issue, this approach 

s not sensitive to small changes, and thus is not capable of 
learly distinguising an unpatched function from a patched 

unction. 
Rather, we specifically focus on making the approach scal- 

ble enough to handle massively growing software systems 
et being accurate by relaxing the problem of code clone de- 
ection to only exact (Type-1) and renamed (Type-2) clones. As 
hown in section 3 , VUDDY can provide non-trivial comple- 
entary benefits that existing approaches fail to provide: un- 

ivaled speed, zero false positive rate, and low false negative 
ate, which eventually lead to good practical impacts. 

.2. Collecting vulnerable functions 

n subsection 2.3 , we addressed an automated way to collect 
ulnerable functions. This method has two limitations: the 
epository must be managed through Git or SVN, and the vul- 
erability patch must contain string “CVE-20” in the commit 
the vulnerable functions and the corresponding security 
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log. However, numerous vulnerability patches are committed
without a hint of CVE id. Therefore, we are trying to collect
vulnerable functions from the channels other than git repos-
itories, such as issue/bug trackers. As the format, or internal
rules differ greatly depending on the issue trackers, automa-
tizing the collection of vulnerabilities is suggested as a future
work. 

6.3. Language support 

The current version of VUDDY supports C and C++. Since there
are also considerable number of programs (and correspond-
ing vulnerabilities) written in a variety of programming lan-
guages, a support for more languages is required. We leave this
as a future work. 

7. Conclusion 

In this paper, we proposed VUDDY, which is an approach for
scalable and accurate vulnerable code clone discovery. The de-
sign principles of VUDDY is directed toward extending scal-
ability through function-level granularity and a length filter,
while maintaining accuracy so that it can afford to detect
vulnerable clones from the rapidly expanding pool of open
source software. VUDDY adopts a vulnerability-preserving ab-
straction scheme which enables it to discover 24% more un-
known variants of vulnerabilities. We implemented VUDDY to
demonstrate its efficacy and effectiveness. The results show
that VUDDY can actually detect numerous vulnerable clones
from a large code base with unprecedented scalability and ac-
curacy. In the case study, we presented several cases discov-
ered by VUDDY, in which vulnerable functions remain unfixed
for years and propagate to other programs. 

Tremendous number of vulnerable code fragments will
continue to be propagated to countless programs and devices.
We strongly believe that VUDDY is a must-have approach to be
used for securing various software when scalability and accu-
racy is required. To secure software or devices, software de-
velopers and device manufacturers have to put their best ef-
forts to patch every vulnerable code clone reported by VUDDY.
As another solution, we suggest that various version control
systems or systems for project management (e.g., GitHub) es-
tablish a warning system by which a change or update in the
original repository is notified to the projects that cloned the
repository. This will immediately inform the developers of the
vulnerabilities in the cloned libraries, and thus shorten the
time between patch release and deploy. 
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