
The 7th International Multi-Conference on Complexity, 
Informatics and Cybernatics: IMCIC 2016

Authors: Hyuckmin Kwon, Seulbae Kim, and Heejo Lee

Mar 04, 2016
Presenter: Seulbae Kim

SIGMATA: Storage Integrity Guaranteeing 
Mechanism against Tampering Attempts for 

Video Event Data Recorders

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Background

 VEDR (Video Event Data Recorder)

 Devices that are installed in a vehicle to record the view through 
the windshield.

 The recorded video streams are saved to storage as files.

 Also known as a dashcam or a car black-box.

1

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Motivation

 The video data taken from VEDRs constitute the most 
important evidence in the investigation of an accident or 
crime.

 The owners can manipulate unfavorable scenes after 
accidents or crimes to conceal their recorded behavior.

 Insert, delete, replace, or reorder the frames.

 Thus, we need to guarantee “frame-wise integrity” of 
VEDR storages, which means the preservation of the

 Existence

 Time information

 Chronological relationship

of all recorded frames.

2

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Problem Definition

 Detecting frame-wise forgery in a VEDR file.

 Frame-wise forgery: the action of modifying the byte-
sequence of video frames or reordering their temporal 
sequence.

 Four types of such forgery:

‒ Insertion

‒ Deletion

‒ Replacement

‒ Reordering

3

Replaced

Timeline

Deleted

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Assumption

 VEDR has a restricted operating environment.

1. Chronological file I/O. 

‒ The video files of a VEDR are created and stored in chronological 
sequence.

2. Isolated device.

‒ VEDRs do not support any networking features.

‒ Thus, we cannot utilize a remote server to verify integrity.

3. Open access.

‒ The entire body of the VEDR is in the hands of the users, who are 
simultaneously the adversaries.

‒ The adversaries have full access to our underlying technique.

4

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Proposed Mechanism: SIGMATA

 Overall structure

1. IAV Generator

‒ In charge of storing the chronological order of frames.

‒ Runs during the recording of the video, up to 24 hours a day.

‒ Generates integrity assurance values (IAVs) by processing each 
frame, and saves them in the storage.

2. Integrity Checker

‒ Exists independently with the VEDR.

‒ Takes advantage of the formerly generated values when it is 
required, e.g. investigation of a car accident.

5

𝐼𝐴𝑉

IAV 

Generator

Integrity 

Checker

𝐼𝐴𝑉1𝐼𝐴𝑉2𝐼𝐴𝑉3𝐼𝐴𝑉4
𝐼𝐴𝑉1𝐼𝐴𝑉2𝐼𝐴𝑉𝑥𝐼𝐴𝑉4

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


SIGMATA - IAV Generator

 Produces IAVs while the VEDR is recording the video.

 Three steps:

1. Frame preprocessing

2. Salted hashing

3. Storage of the computed IAVs

6

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


SIGMATA - IAV Generator

 Frame preprocessing

 Receive a video frame (𝑓𝑟𝑖) from the VEDR.

 Then add the size of the previous frame (𝑓𝑟𝑖−1).

 The resulting value is called “augmented frame.”

‒ e.g. 𝑖𝑡ℎ augmented frame is (𝑓𝑟𝑖 + 𝑠𝑖𝑧𝑒𝑜𝑓(𝑓𝑟𝑖−1))

7

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


SIGMATA - IAV Generator

 Salted hashing

 Create a salt.

‒ Generate a one-way hash chain of length n, by repeatedly applying a 
hash function ℎ1(𝑥) to the elements.

‒ Apply another hash function ℎ2(𝑥) to each element of the chain.

 Append the salt to each augmented frame.

 Hash again.

‒ ℎ3(𝑥)

8

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


SIGMATA - IAV Generator

 Storage of the computed IAVs

 Each video frame is transformed into an IAV.

 Save the consecutive IAVs of the frames in the video storage.

9

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


SIGMATA - IAV Checker

 Integrity examination

 Performs a comparison of two IAV sequences to verify the 
integrity of frames on the occasion of investigation.

10

Identical

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Evaluation

 Attack-suppression scenarios

 Insertion, deletion, replacement, reordering.

 Security analysis

 Generation of fake IAVs.

 Feature comparison

 Comparison with prior works.

 Performance

 Comparison of encoding time with or without SIGMATA.

11

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Evaluation - Attack-suppression

 Detection of frame insertion

 Baseline

‒ 𝑆𝑒𝑡 𝐵 = {𝐼𝐴𝑉1, 𝐼𝐴𝑉2, 𝐼𝐴𝑉3, 𝐼𝐴𝑉4, 𝐼𝐴𝑉5, 𝐼𝐴𝑉6}

 Insertion Attack

‒ 𝑆𝑒𝑡 𝐼 = {𝐼𝐴𝑉1, 𝐼𝐴𝑉2, 𝐼𝐴𝑉𝑥, 𝐼𝐴𝑉′3, 𝐼𝐴𝑉4, 𝐼𝐴𝑉5, 𝐼𝐴𝑉6}

‒ Previously unseen value is inserted.

12

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Evaluation - Attack-suppression

 Detection of frame deletion

 Baseline

‒ 𝑆𝑒𝑡 𝐵 = {𝐼𝐴𝑉1, 𝐼𝐴𝑉2, 𝐼𝐴𝑉3, 𝐼𝐴𝑉4, 𝐼𝐴𝑉5, 𝐼𝐴𝑉6}

 Deletion attack

‒ 𝑆𝑒𝑡 𝐷 = {𝐼𝐴𝑉1, 𝐼𝐴𝑉2, 𝐼𝐴𝑉′4, 𝐼𝐴𝑉5, 𝐼𝐴𝑉6}

‒ 𝐼𝐴𝑉4 is changed to 𝐼𝐴𝑉′4

13

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Evaluation - Attack-suppression

 Detection of frame replacement

 Baseline

‒ 𝑆𝑒𝑡 𝐵 = {𝐼𝐴𝑉1, 𝐼𝐴𝑉2, 𝐼𝐴𝑉3, 𝐼𝐴𝑉4, 𝐼𝐴𝑉5, 𝐼𝐴𝑉6}

 Replacement attack

‒ 𝑆𝑒𝑡 𝑅𝑃 = {𝐼𝐴𝑉1, 𝐼𝐴𝑉2, 𝐼𝐴𝑉𝑥, 𝐼𝐴𝑉′4, 𝐼𝐴𝑉5, 𝐼𝐴𝑉6}

‒ 𝐼𝐴𝑉3 is missing but the number of IAVs is unchanged.

14

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Evaluation - Attack-suppression

 Detection of frame reordering

 Baseline

‒ 𝑆𝑒𝑡 𝐵 = {𝐼𝐴𝑉1, 𝐼𝐴𝑉2, 𝐼𝐴𝑉3, 𝐼𝐴𝑉4, 𝐼𝐴𝑉5, 𝐼𝐴𝑉6}

 Reordering attack

‒ 𝑆𝑒𝑡 𝑅𝑂 = {𝐼𝐴𝑉1, 𝐼𝐴𝑉2, 𝐼𝐴𝑉′4, 𝐼𝐴𝑉′3, 𝐼𝐴𝑉′5, 𝐼𝐴𝑉6}

‒ Supplementary inspection is done to distinguish from replacement 
attacks.

15

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Evaluation - Security analysis

 Assumption: The adversary has a thorough knowledge 
of the mechanism.

 Generation of fake IAV

 By deliberately taking advantage of a hash collision to generate 
the same IAV as the baseline.

 Three constraints:

1. Finding the value that causes a hash collision.

2. Forged frame’s size must be of the same size as the original frame.

3. The forged frame must be visually valid.

 Claim: Such an attack is impractical.

16

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Evaluation - Feature comparison

 Comparison of 8 features

17

Feature NCryptFS Cao et al. ICAR SIGMATA

Detection of frame-wise insertion No No No Yes

Detection of frame-wise deletion No No No Yes

Detection of frame-wise replacement No No No Yes

Detection of frame-wise reordering No No No Yes

Data recovery No No Yes No

Storage Reusability Yes Yes No Yes

Network connection required No Yes No No

Implementation layer Kernel
Application

(server-client)
Kernel

Application
(Codec)

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Evaluation - Performance

 Experimental setup

 Raspberry Pi 2

‒ 900 MHz quad-core ARM cortex-A7 CPU

‒ 1 GB RAM

 Implementation

‒ Modified the FFmpeg encoder. (https://www.ffmpeg.org/)

 Experiment method

 Used three raw video streams recorded by a VEDR

‒ Resolution of 1280 x 720

‒ 30 Frames per second

‒ 60, 120, 180 seconds long.

 Compared the encoding time of a raw video stream

‒ Without SIGMATA

‒ With SIGMATA

18

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html
https://www.ffmpeg.org/


Evaluation - Performance

 Experiment procedure

1. Decoded the videos to get the raw video stream in YUV format.

2. Encoded the raw video twice.

‒ Once by the unmodified FFmpeg.

‒ Once by the FFmpeg in which SIGMATA was implemented.

3. Preset: 30 FPS, 4:2:0 subsampling, ultrafast mode.

19

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Evaluation - Performance

 Result

 An average computational overhead of 1.26 % for each frame.

20

Video Video 1 Video 2 Video 3

No. 
of frames

1,800 3,600 5,400

Frames
per second

30 30 30

Length
(sec)

60 120 180

SIGMATA
applied

No Yes No Yes No Yes

Encoding
time (sec)

149.30 150.33 293.39 297.84 428.58 436.69

Avg.
encoding
time/frame

0.0829 0.0835 0.0815 0.0827 0.0794 0.0807

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1800 3600 5400

A
v

er
a

g
e 

p
ro

ce
ss

in
g
 

ti
m

e 
p

er
 f

ra
m

e 
(s

e
c 

/ 
fr

a
m

e)

No. of frames
FFmpeg

FFmpeg+SIGMATA

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Discussion

 Forgery of the first frame

 The first frame of the video stream is directly hashed without 
adding the size of the previous frame, since such a frame does 
not exist.

‒ This may amplify the likelihood of forgery.

 However, the first frame occupies a small portion, 0.033 sec, of 
the entire video stream spanning 24 hours.

‒ This weakness is negligible.

21

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Discussion

 The use of a user-inaccessible storage

 We assume the existence of a secure storage

‒ Not accessible by users.

‒ e.g., Trusted Platform Module (TPM).

 General VEDRs are ready to utilize such hardware

‒ ARMv6 architecture has supported TrustZone since 2001.

‒ ARM is the most widespread architectures for embedded processors.

 For devices that have no such hardware

‒ Commercial TPM chips for embedded devices are available.

‒ Atmel AT97SC3203S.

22

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Conclusion

 Proposed a novel concept of frame-wise forgery in VEDR 
storage and a mechanism named SIGMATA to assure its 
integrity.

 Solved several problems, including the detection of insertion, 
deletion, replacement, and reordering of frames.

 Verified the utility of SIGMATA by investigating attack 
scenarios and conducting a security analysis of the possibility 
of bypassing SIGMATA.

 Evaluated its performance under Raspberry Pi 2 environment 
and verified that SIGMATA is applicable to the real-time 
scenario.

23

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html


Thank you

Q & A

24

http://cic.korea.ac.kr/wizuniv/user/koreacice/index.html

