
Received November 1, 2021, accepted December 11, 2021, date of publication December 27, 2021, date of current version January 6, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3138768

Riding the IoT Wave With VFuzz: Discovering
Security Flaws in Smart Homes
CARLOS KAYEMBE NKUBA 1, SEULBAE KIM 2, SVEN DIETRICH3, (Senior Member, IEEE),
AND HEEJO LEE 1
1Department of Computer Science and Engineering, Korea University, Seoul 02841, Republic of Korea
2Department of Computer Science, Georgia Institute of Technology, Atlanta, GA 30332, USA
3Department of Computer Science, Hunter College, City University of New York (CUNY), New York, NY 10065, USA

Corresponding author: Heejo Lee (heejo@korea.ac.kr)

This work was supported in part by the Institute of Information & Communications Technology Planning & Evaluation (IITP) Grant
funded by the Korea Government [Ministry of Science and Information and Communications Technology (ICT) (MSIT)] through the
Development of Automated Vulnerability Discovery Technologies for Blockchain Platform Security under Grant 2019-0-01697, in part by
the Regional Strategic Industry Convergence Security Core Talent Training under Grant 2019-0-01343, in part by the ICT Creative
Consilience Program under Grant IITP-2021-2020-0-01819, and in part by the Research Foundation City University of New York
(RFCUNY).

ABSTRACT Z-Wave smart home Internet of Things devices are used to save energy, increase comfort,
and remotely monitor home activities. In the past, security researchers found Z-Wave device vulnerabilities
through reverse engineering, manual audits, and penetration testing. However, they did not fully use fuzzing,
which is an automated cost-effective testing technique. Thus, in this paper, we present VFuzz, a protocol-
aware blackbox fuzzing framework for quickly assessing vulnerabilities in Z-Wave devices. VFuzz assesses
the target device capabilities and encryption support to guide seed selection and tests the target for new
vulnerability discovery. It uses our field prioritization algorithm (FIPA), which mutates specific Z-Wave
frame fields to ensure the validity of the generated test cases. We assessed VFuzz on a real Z-Wave network
consisting of 19 Z-Wave devices ranging from legacy to recent ones, as well as different device types. Our
VFuzz evaluation found 10 distinct security vulnerabilities and seven crashes among the tested devices and
yielded six unique common vulnerabilities and exposures (CVE) identifiers related to the Z-Wave chipset.

INDEX TERMS Smart home security, Z-Wave, Internet of Things, fuzzing, vulnerabilities discovery.

I. INTRODUCTION
The number of Internet of Things (IoT) devices is expected
to increase exponentially every year [1]. The IoT smart home
automation industry follows this trend: more than 100million
Z-Wave chipset modules have been sold to smart home ser-
vice providers [2]. This is due to Z-Wavewireless smart home
protocols [3] being an appealing choice for several device
manufacturers because of their simplicity of use, interoper-
ability among different devices, power efficiency, backward
compatibility with legacy devices [4], and use of a frequency
range below 1GHz that does not interfere with other common
wireless protocols, e.g., Wi-Fi frequency band of 2.4 GHz.
Despite the rapid growth of Z-Wave smart home devices,

manufacturers tend to focusmore on device functionality than
on security. Consequently several serious flaws have been
reported in the past [5]–[17]. Moreover, device vendors did

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Yan .

not inform the users about the weaknesses or shortcomings
of their legacy products, which did not implement encryption;
thus, they are vulnerable to remote control, as demonstrated
in Section V and in [12]. In fact, we found that only 27% of
the Z-Wave products available worldwide [18] implemented
and supported the latest Z-Wave Security 2 (S2) encryp-
tion mechanism that protects against replay attacks. Despite
the security enhancement in S2 devices, attack vectors with
critical security implications, e.g., completely neutralizing
the S2 controller and alarm system, still exist, as Section V
demonstrates. However, information on device vulnerabilities
or known common vulnerabilities and exposures (CVEs) for
Z-Wave products [19], [20] are scarce, which encouraged us
to investigate the Z-Wave ecosystem. We intend to provide
not only security awareness to end users about their smart
home devices, but also to enable device manufacturers to fix
the discovered flaws.

Recent and past studies on Z-Wave security found device
flaws by relying on manual techniques, such as reverse

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 1775

https://orcid.org/0000-0002-6424-9054
https://orcid.org/0000-0001-9990-7953
https://orcid.org/0000-0002-5831-0787
https://orcid.org/0000-0002-9697-2108

C. K. Nkuba et al.: Riding IoT Wave With VFuzz: Discovering Security Flaws in Smart Homes

engineering, manual audits, risk analysis, penetration testing,
and chipset memory extraction, which are not only time-
consuming, but complex to implement [16], [17], involving
significant computation cost [11], and difficulties in repro-
ducing results [8], [9]. These approaches failed to meet the
imminent need to promptly analyze the security of com-
mercialized products, as finding and fixing issues early on
is key to preventing attackers from abusing and collecting
data from smart homes, harassing users, illegaly accessing
homes, and hijacking the smart home gateway to launch IoT-
botnet-based distributed denial-of-service (DDoS) attacks on
vulnerable critical cyberinfrastructures [21]–[25]. Moreover,
existing fuzzers such as AFL [26] cannot fuzz IoT devices
because of the lack of hardware support, the non-availability
of device source code, firmware, and memory debug analysis
tools.

To keep up with the fast development pace and facilitate
the testing of Z-Wave devices for bugs and security vulnera-
bilities, we apply a fuzzing approach that is highly effective
in finding new vulnerabilities at a low cost to systemati-
cally assess Z-Wave. We present VFuzz (Z-WaVe protocol
Fuzzer), which is a feedback-driven fuzzing framework that
features a semantic-aware mutation of input packets using
the domain knowledge of Z-Wave, a cyber-physical execu-
tor that automatically orchestrates remote Z-Wave devices
for testing, and a state watchdog consisting of a sensor to
monitor device states and generate feedback.With VFuzz, the
entire process of testing a Z-Wave device is fully automated:
(1) turning the device on and initializing; (2) analyzing
device capabilities and encryption supports to guide the seed
selection; (3) generating and mutating semi-valid packets;
(4) sending the packet to the device; (5) monitoring the states
and bugs; and (6) capturing feedback to guide the input
mutator.

To evaluate VFuzz, we used 19 different Z-Wave devices
from different manufacturers to build a diverse, realistic
smart home environment for testing. The evaluation results
demonstrate that VFuzz effectively detects 10 distinct device
security vulnerabilities and seven crashes among the tested
devices with six new CVE identifiers assigned by the US
CERT/CC division [27]. Furthermore, the evaluation shows
that the tested devices are vulnerable to command injection,
data tampering, impersonation, and denial of service (DoS)
attacks.

Contributions. This paper makes the following
contributions:
• New semantic-aware mutations.We propose a practical
protocol-aware mutation algorithm called the field pri-
oritization algorithm (FIPA), which makes use of both
the syntactic and semantic information of the Z-Wave
protocol to generate semi-valid test cases to increase the
effectiveness of fuzzing.

• New IoT fuzzer. We built the first functional blackbox
fuzzer for the Z-Wave protocol that brings the mutation,
device orchestration, test execution, and state analysis

under one umbrella. Any Z-Wave device can be assessed
with low complexity using VFuzz.

• Zero-day vulnerabilities. We validated VFuzz on a real
Z-Wave test network consisting of both the latest and
legacy Z-Wave devices. We found 10 security vulnera-
bilities that resulted in six newCVEs, assigned by theUS
CERT/CC, related to the Z-Wave chipset. This study’s
findings provide awareness to manufacturers to fix and
patch vulnerable products. A demonstration video of the
impact of found vulnerabilities on smart home devices is
available in [28].

The remainder of the paper is organized as follows:
Section II presents related work. Section III introduces the
Z-Wave protocol information and threat model. Section IV
describes our methodology. Section V presents the fuzzer
evaluation and results. Section VI describes the discussion
and countermeasures and Section VII concludes the paper.

II. RELATED WORK
This section presents past research related to IoT protocol
fuzzing and Z-Wave security.

A. IoT FUZZING STUDIES
Fuzzing, in use since the 1990s [29], has been used to discover
vulnerabilities especially in operating system (OS) kernels,
network protocols, and applications. However, IoT fuzzing
has not seen a rapid expansion mainly because of device
constraints, such as limited resources and processing power,
which result in low fuzzing throughput. Muench et al. [30]
stated that fuzzing embedded devices is challenging and com-
plex compared to desktop systems because of fault detec-
tion, fuzzing performance, and instrumentation challenges
owing to the lack of crash-reporting functionalities, multi-
processing or virtualization, and firmware source code.

Despite the constraints of fuzzing on embedded devices,
several fuzzing test suites have been proposed for IoT sys-
tems. KillerBee [31] is a penetration testing tool for the
ZigBee protocol. The authors of [32] developed a fuzzer
that targets the 6LoWPAN protocol. IoTFuzzer [33] is an
app-based fuzzing framework developed as a mobile app
that checks for the memory corruption of target IoT devices.
Commercial solutions such as BeStorm [34] and Synopsys
Defensics [35] do not fuzz the Z-Wave protocol, but instead
target ZigBee, CoAP [36], MQTT [37], Bluetooth, andWi-Fi
in their IoT fuzzing test suites.

The state-of-the-art AFL fuzzer [26] cannot fuzz IoT
devices owing to the lack of IoT device hardware support.
Work by Zheng et al. [38] proposed a complex user-mode
and full system-mode emulation to fuzz IoT firmware using
AFL. This work’s limitation was that it was complex to
implement and supported only a few CPU architectures and
IoT firmware, as it relied on Firmadyne [39] for emulation.
Also, Avatar [40] and Muench et al. [30] explored process
emulation and real hardware to fuzz embedded devices; how-
ever, the fuzzing throughput was low.

1776 VOLUME 10, 2022

C. K. Nkuba et al.: Riding IoT Wave With VFuzz: Discovering Security Flaws in Smart Homes

In summary, existing smart home protocol fuzzers do not
assess Z-Wave devices. The specialty of our work is that (1)
we conduct fuzzing directly via radio frequencies (RF) on
real Z-Wave devices, and (2) we achieve that without the
need of a complex emulated system, while increasing fuzzing
throughput simultaneously.

B. Z-WAVE SECURITY RESEARCH
In addition to the above fuzzing studies on IoT, some studies
have been conducted to find vulnerabilities in Z-Wave smart
home devices without fuzzing. In 2013, Z-Force [5] exposed
Z-Wave device breaches for the first time using a sniffing
device and successfully identified vulnerabilities in a Z-Wave
door lock. Scapy-Radio [41], a project from 2014 combin-
ing Scapy, GNU Radio Companion (GRC) software, and
software-defined radio (SDR), successfully disabled an alarm
by injecting the OFF command. Based on Scapy-Radio, the
authors in [7], [42], [43] produced a tool called EZ-Wave,
which is used for network discovery and device status infor-
mation gathering.

Prior to our work, other researchers assessed the Z-Wave
protocol for device security and privacy assurance. Research
in [6]–[17] has revealed protocol implementation vulnerabili-
ties, device non-volatile memory extraction, Z-Wave network
key retrieval, rogue controller insertion, identification of
Z-Wave threats, and DoS on the Z-Wave controller. These
works provide a strong background on Z-Wave vulnerability
testing; however, (1) unlike fuzzing, they rely heavily on
manual analysis, which is time-consuming, and (2) many
listed works do not provide an easy and ready to use system
that could help smart home users and device vendors assess
their device vulnerabilities.

Our research builds on these previous studies and its nov-
elty is the development of an efficient Z-Wave fuzzer for not
only fuzz testing, but also for the security testing analysis.
Moreover, our fuzzing framework is new in the IoT home
automation protocol sphere as it targets the Z-Wave protocol.

III. BACKGROUND AND THREAT MODEL
In this section, we present a brief overview of the Z-Wave
protocol and its security features to better understand its
functionality. Also, we describe the scope of our research in
the context of the larger Z-Wave ecosystem while presenting
a threat model related to smart homes.

A. OVERVIEW OF Z-WAVE PROTOCOL
Z-Wave [3] is a wireless home automation protocol developed
in 2001 with an alliance of over 800 companies manu-
facturing over 3300 certified interoperable products world-
wide [4]. A single Z-Wave home control network can have
up to 232 smart devices interconnected in a mesh topology
using the 908 MHz or 916 MHz frequency band for the
US, the 868.40 MHz or 869.85 MHz frequency band for
Europe, and other frequencies in other parts of the world [44].
The communication range between devices is approxi-
mately 30 m indoors and approximately 100 m outdoors.

FIGURE 1. Z-Wave basic frame structure.

Device identification and standardization are defined in sev-
eral classes that specify roles and functionality to ensure
interoperability between devices from different vendors in the
Z-Wave home control network [45]. Starting in September
2020, the Z-Wave Alliance introduced a new Z-Wave Long
Range (LR) specification [46] that increased the wireless
range and coverage to 1,609 m, the number of devices per
network from 232 to 4000 and is backward compatible and
interoperable with legacy-certified Z-Wave devices. Z-Wave
LR offers new adoption in industries such as hotels, offices,
commercial lights, and multi-dwelling units.

The Z-Wave protocol comprises four layers: physical
(PHY), media access control (MAC), network (NWK),
and application (APL) layers. The protocol implements the
open International Telecommunication Union Standardiza-
tion (ITU-T) Sector G.9959 at the PHY andMAC layers [47].
The PHY layer manages the frequency selection, modula-
tion, encoding, and decoding of the data. The PHY/MAC
layers define the frame structure by adding the preamble
(PRE), start-of-frame (SOF), and end-of-frame (EOF) delim-
iter to allow the receiver to decode the Z-Wave frame. The
MAC layer manages collision avoidance, frame acknowledg-
ment (ACK) and frame re-transmission. It contains valuable
information for the Z-Wave device communication, such
as the home-ID (H-ID), source (SRC), frame control (FC),
length (LEN), destination (DST), application layer payload,
and checksum (CS) [48].

The NWK layer manages network management and net-
work services to the APL layer i.e., device inclusion and
exclusion. The APL layer provides the definition of the
frame application payload consisting of the header (HDR),
command class (CmdCL), command (CMD), and parameter
values (PARAM). It defines the Z-Wave device type and role
and provides the transport encapsulation service. Moreover,
it offers interoperability and customization between different
Z-Wave device manufacturers [49]. The total Z-Wave frame
size, including the PRE, SOF, MAC, and EOF, is between
24 and 76 bytes. The maximum MAC frame size is 64 bytes.
Figure 1 provides a summary of the basic Z-Wave frame
structure.

Any certified Z-Wave product has a Z-Wave chipset on-
board for interoperability with other devices from different
manufacturers, as well as for backward compatibility with
earlier versions. Since 2002, Z-Wave chipsets have evolved

VOLUME 10, 2022 1777

C. K. Nkuba et al.: Riding IoT Wave With VFuzz: Discovering Security Flaws in Smart Homes

in terms of enhanced data rate, LR, low power, high perfor-
mance, and encryption support.

B. NETWORK SECURITY FEATURES OF Z-WAVE
Because IoT devices communicate using radio frequency
signals, their security is challenging as anyone in the vicinity
can record the signal, and either replay it or spoof it back to
the network. Considering the above-mentioned requirements,
Z-Wave implements several security schemes for commu-
nication between the controller and endpoint devices. The
Z-Wave transport encapsulation command class control [50]
is defined as follows:

1) UNENCRYPTED COMMUNICATION USING CS-8 OR
CRC-16 ENCAPSULATION
All controllers use this to communicate not only with legacy
devices without encryption support owing to backward com-
patibility, but also with secure devices for network man-
agement traffic. In this mode, an additional CS-8 or cyclic
redundancy check (CRC-16) checksum is added to validate
the payload integrity of a frame. CS-8 and CRC-16 transport
encapsulation is considered a non-secure communication,
because it is vulnerable to a replay attack.

2) ENCRYPTED COMMUNICATION USING SECURITY 0 (S0)
This mode is used for secure application communication
between S0 authenticated Z-Wave devices such as door locks,
garage door remote openers, and the controller. Themain goal
of S0 is to ensure confidentiality, authentication, and replay
attack prevention of the Z-Wave application layer payload
using advanced encryption standard (AES-128) [51] encryp-
tion. Figure 2a illustrates the sending of a single S0 message
that requires three commands and three ACKs, resulting in
increased device power consumption [50]. The S0 network
key is shared among all Z-Wave devices; therefore, a man-
in-the-middle (MiTM) attack can retrieve it during the initial
device network inclusion [5].

3) ENCRYPTED COMMUNICATION USING SECURITY 2 (S2)
S2 is the newest security class that uses AES-128-CCM [52]
for encryption and authentication, and the elliptic curveDiffie
Hellman (ECDH) [53] for secure network key derivation
to alleviate S0 network key vulnerability [5]. S2 reinforces
the confidentiality, authentication, and integrity of Z-Wave
device communications. Figure 2b illustrates an S2 secure
message, resulting in a lower device power consumption. The
latest devices that support S2 are considered to be secured;
however, they must also support unencrypted CS-8, CRC-
16, and S0 communication because of the Z-Wave manda-
tory backward compatibility and for network management
purposes. Consequently, the S2 device was downgraded to a
weaker S0 security scheme during the initial device network
inclusion [54]. Moreover, Section V presents the attack vec-
tors on the S2 devices.

FIGURE 2. S0 and S2 message encapsulation.

C. THREAT MODEL AND MOTIVATION
Owing to the great demand for IoT smart home devices,
manufacturers usually rapidly release new devices with a
focus on new functionalities rather than executing adequate
security testing; thus, resulting in security breaches.

1) SMART HOME SECURITY THREATS
Smart home systems increase the security complexity as
they encompass several layers: device, controller, cloud, and
mobile application. All these layers, if not well implemented,
could create opportunities for attacks on devices because each
one uses different technology and communication protocols
that could lead to security breaches, protocol specification
violations, and logical faults in automation apps.

Moreover, these weaknesses can steer several bugs in smart
home devices such as timing faults, sensor blinding, improper
handling of timeout, faults in handling exceptional cases,
weak device authentication, state confusion, fake andmissing
events, device remote control, over-privileged capabilities in
mobile apps, device state out of synchronization, unexpected
trigger action, denial of execution (DoE), and DoS [55], [56].

2) ATTACKER GOALS
With the above-mentioned security risks in home automation
systems, an attacker might wish to have access to the smart
home to either steal valuable data of the house owner or to
conduct criminal offenses. With adequate skills and tools, the
attacker might control, disable, or masquerade smart home
devices, and have access to the house, while siren devices
are not triggered, and online notifications are not sent to the
cloud. Hence, preventing the house owner from being notified
of the intrusion through his mobile app as demonstrated
in Section V-E.

Also, the attacker could gain access to the device logs to
obtain the daily usage pattern and confidential information of
the house owner that could be exploited or sold to marketing
companies. The attacker can manipulate vulnerable devices
at their will and deny any communication to harass the house
owner, to avoid triggering alerts, to avoid leaving a trace,
or claim paid repair service. One of the worst cases will be to
remotely turn on a smart gas controller and manipulate high-
energy-consuming devices connected to smart switches, such
as a stove and an electric heater, which could cause damage
to the house and increase the energy bills.

1778 VOLUME 10, 2022

C. K. Nkuba et al.: Riding IoT Wave With VFuzz: Discovering Security Flaws in Smart Homes

3) Z-WAVE DEVICES ATTACK VECTOR
As Z-Wave devices operate wirelessly, an attacker could
be near the house and sniff, with adequate equipment, the
Z-Wave smart home network traffic. The attacker could
retrieve the network information to either jam the device
communication or inject malicious traffic that causes the
Z-Wave devices to malfunction. As illustrated in Section I,
unencrypted and S0 devices are widely used in smart
homes and constitute the majority of products sold until late
2018, as the Z-Wave Alliance required device manufactur-
ers to support S2 security on new devices only from April
2017 onward [57]; thus, leaving early adopting smart home
users at risk.

Moreover, in Subsection V-E, we provide a real attack sce-
nario on Z-Wave devices using a portable Raspberry Pi. The
vulnerabilities found by VFuzz helped create exploits that
could make the smart home controller services completely
obsolete. With this simple implementation, an attacker could
have easy access to the smart home and misuse devices at
their will without leaving any trace.

4) MOTIVATION
In consideration of the above-mentioned attacks, there is a
need to efficiently assess devices before release because it is
difficult to patch IoT devices after deployment, and legacy
Z-Wave devices are one-time-programmable (OTP) and can-
not be updated. Therefore, the goal of our research is to
conduct a security test on Z-Wave devices that are used in
an actual smart home to help not only the end consumer
discover the potential security flaws of the devices but also the
manufacturers fix them. As we intend to use fuzzing to assess
Z-Wave device vulnerabilities, we discuss our methodology
next.

IV. METHODOLOGY
We aim to provide an easy-to-use fuzzer targeting Z-Wave
devices (e.g., a wide variety of modern smart-home devices)
to not only find exploitable vulnerabilities, but also allow
security professionals and end-users to assess potential
threats to their devices. In this section, we present the chal-
lenges of systematically testing Z-Wave devices and the
methodology used to develop VFuzz to deal with these
challenges.

A. CHALLENGES OF Z-WAVE FUZZING
Fuzzing is a decades-old technique that is widely used for
testing software programs, and its practical merits have
already been proven with several new software bugs revealed.
Moreover, several approaches have demonstrated that even
IoT protocols such as 6LoWPAN, ZigBee, and Bluetooth
Low Energy (BLE), can be assessed via fuzzing [31]–[35].
However, despite its widespread use in practice, systematic
fuzz testing of the Z-Wave protocol has not yet been studied.
Unlike other protocols, it is a proprietary protocol whose
source code is not open-sourced, and the implementation is

only available through Z-Wave SoC (System on Chip), which
is completely blackbox; thus, it is challenging to debug.

Specifically, applying the fuzzing technique to an entirely
new context of Z-Wave devices poses a unique set of new
challenges, such as mutating structured packet data, remotely
testing physical devices, and capturing bugs and state transi-
tions from blackbox devices.

1) CHALLENGE 1: MUTATING SEMANTICALLY
STRUCTURED DATA
Z-Wave packet frames are not only structured like any
other network protocol, but also carry hierarchically orga-
nized information to describe the semantics (i.e., functions
and commands) per device type. Most traditional fuzzers
(e.g., AFL and libFuzzer [58]) are agnostic to the structure of
the data when applying mutation operators, and existing IoT
fuzzers targeting other protocols cannot efficiently oversee
Z-Wave specific semantics, which makes it challenging to
directly use them when dealing with Z-Wave packets.

Solution 1. Using the domain knowledge that we accumu-
lated from digesting the Z-Wave protocol specification, we
designed a mutation logic called FIPA (Field Prioritization
Algorithm), which is aware of the structure as well as the
semantics of a packet frame; thus, making VFuzz capable of
not only generating valid packets, but also actively investigat-
ing and inferring the device status.

2) CHALLENGE 2: REMOTELY TESTING PHYSICAL DEVICES
Unlike regular software programs that we can execute, com-
municate with, and test locally, Z-Wave devices are ‘‘real,’’
and they reside in the networks. In other words, we do not
naturally obtain full control over the devices under test, and
reasonable ways to locate devices, transmit mutated data,
capture responses, or even switch them on/off need to be
newly devised for VFuzz to be operational.

Solution 2. As a crucial element of VFuzz, we pro-
pose, implement, and build a cyber-physical system that
includes both software and physical components as artifacts
of VFuzz, which enables us to reliably assess network devices
over-the-air.

3) CHALLENGE 3: CAPTURING BUGS AND FEEDBACK
FROM BLACKBOX DEVICES
As our target is a physical network device, capturing its states
is extremely challenging; a device could internally make a
transition to an illegitimate state or crash silently without
the fuzzer knowing about it. Nonetheless, it is essential for
a fuzzer to use these states to detect bugs and generate
feedback for efficient exploration of the input space. Certain
fuzzing approaches that consider similar settings [38] rely
on emulators to deal with such blackbox systems. However,
no emulators for Z-Wave devices exist to date, and develop-
ing an emulator itself is not feasible as neither the Z-Wave
protocol implementation nor the device implementation is
open-sourced.

VOLUME 10, 2022 1779

C. K. Nkuba et al.: Riding IoT Wave With VFuzz: Discovering Security Flaws in Smart Homes

FIGURE 3. Overview of VFuzz’s components and workflow.

Solution 3. We categorized a list of assorted Z-Wave
devices into classes using their characteristics (e.g., device
type) as criteria, and build oracles for each class by mapping
key indicators with device states. By observing the indica-
tors listed in the mapping, VFuzz could determine issues in
devices or generate feedback to the packet mutator.

B. OVERVIEW
With the aforementioned challenges in mind, we designed
VFuzz, a mutation-based Z-Wave fuzzing framework that
combines both cyber and physical components to effectively
assess Z-Wave devices. Figure 3 illustrates the components
and workflow of VFuzz. Starting from a valid Z-Wave packet
as a seed (1©), VFuzz’s packet mutator (2©, Subsection IV-C)
applies a protocol-aware mutation scheme, called FIPA,
which generates syntactically valid yet potentially malformed
Z-Wave packets that could induce unexpected state transi-
tions of the device under test (DUT).

VFuzz’s cyber-physical executor (Subsection IV-D)
orchestrates the overall execution of a fuzzing round (3©) by
turning on the target DUT via a smart switch device (4©),
establishing a connection between VFuzz and the device, and
feeding the mutated packet over the air through a compatible
Z-Wave dongle (5©).
The state watchdog (Subsection IV-E) includes a Z-Wave

transceiver (6©) that monitors the DUT to capture any
response and state transition whenever a mutated packet is
transmitted. The captured state transitions and the response
(or the absence of response) of the device cross the cyber-
physical boundary again and are assembled by the state ana-
lyzer (7©) to be handed over to the feedback generator (8©,
Subsection IV-F). Receiving the multiplexed state, VFuzz’s
feedback generator enqueues the mutated packet if the exe-
cution feedback is interesting and generates a report if any
bug is detected.

C. PACKET MUTATOR
As Z-Wave devices operate wirelessly by sending and receiv-
ing signals over the radio frequency band, the input space is

FIGURE 4. Classification of the fields constituting the packet frame of
the current Z-Wave protocol, based on the proposed packet model.

limited to the packets conforming to the Z-Wave protocol
described in Section III. Accordingly, VFuzz creates and
mutates Z-Wave packets and transmits them to the DUT.
By default, the maximum size of the transport layer frame
of Z-Wave is 64 bytes, and as noted in a previous study [43],
it takes 4 ∗ 10146 years to assess each possible Z-Wave frame
at the rate of sending one frame per second to the target
device. Thus, for an effective and feasible testing, we need
to carefully devise an optimized mutation strategy in terms
of the fields that must be mutated, the mutation operator that
should be applied to them, and proper schedule regarding
when to mutate them.

1) Z-WAVE PACKET MODEL
Many mutation strategies could be set up by leveraging the
domain knowledge of the Z-Wave specification. To reduce the
size of the input space while keeping the chances for a packet
to be accepted and trigger bugs high, a Z-Wave packet Z could
be modeled as a union of four disjoint sets, considering the
role of the field:

Z = F ∪ D ∪MT ∪MA (1)

where
• F is the set of fixed fields. The values are fixed per target
device, andVFuzz nevermutates them, e.g., the home ID
and device ID.

• D is the set of dependent fields. The values are deter-
mined absolutely by the values assigned to the rest of
the fields, e.g., checksum.

• MT is the set of mutable transport fields. The values
decide how the packet will be transported through the
Z-Wave mesh network, e.g., by setting intermediate
nodes to the destination device in a routed packet.

• MA is the set ofmutable application fields. These values
describe the functions of a device and how they should
be processed.

The packet model was devised by studying the past and
current Z-Wave specifications. Considering the mandatory
backward compatibility policy of Z-Wave and device inter-
operability requirements, it is likely that future specifica-
tions also fit into our generic model. Each field of the cur-
rent Z-Wave frame structure could be classified accordingly
(see Figure 4).
• F = {H-ID,DST}. These fields are strictly fixed
because they define the target device and the Z-Wave
network to which it belongs.

• D = {LEN,CS}. The LEN is determined by the length
of the packet, and CS is determined by the checksum.
If the device properly implements the Z-Wave protocol,
mutating either field would likely get the packet rejected

1780 VOLUME 10, 2022

C. K. Nkuba et al.: Riding IoT Wave With VFuzz: Discovering Security Flaws in Smart Homes

by the target. However, unlike the fixed fields, we should
not completely exclude these fields from mutation can-
didates, because when dealing with protocols, we could
expect multiple erroneous cases such as protocol not
being implemented correctly missing checksum verifi-
cation, procedures being under-implemented and failing
to serve expected functions, or more than documented
functions are implemented, e.g., through code cloning,
where mutated dependent fields could be interpreted
differently than the original purpose. These are sufficient
to render unsafe environment for users, and the packet
mutator of VFuzz covers such scenarios by occasionally
mutating the dependent fields.

• MT = {SRC,FC,HDR}. SRC specifies the node from
which the packet is originates, and FC controls the
transport frame type, such as ACK, singlecast, multicast,
and routed frames with additional properties defined in
the HDR field. Mutating these fields with random values
could trigger bugs that are related to either bad protocol
implementation or network communication errors. For
instance, sending a packet where the SRC is equal to
the DST with invalid network routing information could
trigger improper handling of timeout and hop count, and
invalid update of the target device routing table. Also,
it could be interesting to observe the device response to
the malformed packets.

• MA = {CmdCL,CMD,PARAM}. According to the
Z-Wave protocol specification, mutable fields could
be hierarchically classified into root fields (Command
class), intermediate fields (Command), and terminal
fields (Parameters), where the value set to the parent
field determines the legitimate values of the child field.
For instance, Table 1 presents the hierarchy regarding
the ‘‘Binary Switch’’ Command Class registered to a
smart switch device. The Binary Switch defines
three child commands to set the state of the switch, to
request the current state of the switch (get), and for the
switch to report its current state. The specific action is
determined using the parameter value. For example, to
set the switch on, a controller should set CmdCL, CMD,
and PARAM fields to ‘‘Binary Switch’’, ‘‘Set’’,
and any value in the range 0 × 01-0 × 63 or 0xFF,
respectively. Note that Z-Wave documentation explicitly
states that commands with invalid parameter values,
that is in the range 0 × 64-0xFE, had to be rejected.
Therefore, the mutation of these fields is designed to
cover both legal and illegal values, while also assess-
ing the correctness of the device internal protocol
implementation.

2) MUTATION OPERATORS
An effective fuzzer must ensure that all inputs in the input
space should be reachable through mutations. As listed in
Table 2, VFuzz features the operators that fully use the
semantics of the fields, as well as those adopted from classic

TABLE 1. An example of the hierarchy of the mutable application fields
of a Command Class Binary Switch associated with a smart switch device,
whose basic function is to turn the power switch on or off.

TABLE 2. List of mutation operators VFuzz uses. Bitflip, byteflip,
arithmetic, interesting, and insert operators are adopted from the AFL
fuzzer.

mutation-based fuzzers as they are proven to be effective
in generating critical values for exploring various program
behaviors. These mutation operators are coupled with the
types of fields, as summarized in Table 3. Fixed fields do
not have mutation operators as they might not be mutated.
Meanwhile, each field belonging to the mutable field has
a predefined set of semantically valid and invalid values.
For example, when mutating the PARAM field of a Binary
Switch Set packet shown in Table 1, rand_valid ran-
domly chooses a value from {0 × 00, 0 × 01, . . . , 0 ×
63, 0xFF}, which would either turn the switch on or off,
and rand_invalid selects a random value in the range
0 × 64-0xFE, that the DUT should ignore, as per
specification.

3) MUTATION SCHEDULING
Given the mutation candidates and corresponding mutation
operators, FIPA, as illustrated in Algorithm 1, schedules the
mutation to efficiently explore the input space.

D. CYBER-PHYSICAL EXECUTOR
The cyber-physical executor of VFuzz bridges the cyber
components with the physical components by executing the
DUT through a software-controllable switch, establishing a
connection with the device, and sending the mutated packet
to the device via TX modules.

1) DEVICE POWER MANAGEMENT, CONNECTION,
AND PROBING
The Switch, as illustrated in Figure 3, ensures that the device
is restarted in the case of a crash or bug. For instance,

VOLUME 10, 2022 1781

C. K. Nkuba et al.: Riding IoT Wave With VFuzz: Discovering Security Flaws in Smart Homes

TABLE 3. Mutation operators assigned to each field. F, M, and D in Type
refer to fixed, mutable, and dependent fields, respectively.

a Z-Wave smart power strip could be used to automatically
turn on/off the power of a target smart wall plug connected to
it. Once the device is powered on, VFuzz first tests whether it
is responsive by sending a Z-Wave NO_OPERATION (NOP)
frame, which is like the TCP/IP ICMP Echo. VFuzz uses the
NOP frame to query and probe the status of the target device.
If the target device responds with an ACK, the connection is
considered established, and VFuzz sends the mutated packet.
Figure 5 shows the VFuzz message flow.

2) DEVICE CAPABILITIES RETRIEVAL
For an effective packet mutation, VFuzz needs to knowwhich
CmdCL the target device supports to prioritize their mutation
and learn its encryption capabilities. This is achieved by
sending a NODE INFORMATION (NIF) GET frame to the
target device, which would respond with its NIF REPORT
frame listing all its capabilities and supported CmdCL. After
receiving the NIF REPORT, VFuzz prioritizes the mutation
of supported CmdCL and analyzes the device encryption
support by searching in the NIF REPORT packet for values
0×98 and 0×9F, which correspond to S0 and S2 encryption
supports. If the target device does not support encryption, it is
vulnerable to packet injection, replay attacks, impersonation,
and remote control.

FIGURE 5. Initial message flow between VFuzz and target device.

3) SENDING PACKET OVER THE AIR VIA TX/RX MODULES
The TX/RX modules provide a configuration that allows
the fuzzer to send and receive packets via SDR devices or
supported dongles. These modules use third-party libraries

Algorithm 1 Field Prioritization Algorithms (FIPA)
Input : S: set of seed Z-Wave packets,

T : target Z-Wave device under test,
O: set of bug oracles,
H -ID: unique identifier of Z-Wave network,
DST : unique identifier of T ,

Output : B: set of packets that trigged bugs

procedure VFuzz(H -ID,DST ,T)
/* Main module of VFuzz */
queue← S;
while True do

p← queue.dequeue()
p′ ← Mutate(p,H -ID,DST)
if TestAndCheck(p′,T ,O) == True then

B← B ∪ {p′}
/* A mutated packet is flagged as Interesting if

it increases T response time. */
else if isInteresting(p′,T) == True then

queue.enqueue(p′)

if queue == ∅ then
queue← S

return B
procedure TestAndCheck(p′,T ,O)

/* Tests device T with the mutated packet p’, and
checks the device states against oracle O. */

Test(T, p’)
isBug← Check(T, O)

return isBug

procedure Mutate(p,H -ID,DST)
/* Packet p has 10 fields:

H-ID,SRC,FC,LEN,DST,HDR,CmdCL,CMD,PARAM,CS. Each
field has a name, type, and value. */

p[0].value← H -ID
p[4].value← DST

/* Choose and mutate a mutable transport or mutable
application field. */

mut_fields← {p[1], p[2], p[5], p[6], p[7], p[8]}
field ← random_choice(mut_fields)
ops← get_all_mut_operators(field)
op← random_choice(ops)
p[field .index].value← op(field .name,field .value)

/* Properly set dependent fields. */
p[3].value← updateLength(p)
p[9].value← updateChecksum(p)

/* Occasionally choose and mutate a dependent field.

*/
if random() < mut_dep_prob then

dep_fields← {p[3], p[9]}
field ← random_choice(dep_fields)
ops← get_all_mut_operators(field)
op← random_choice(ops)
p[field .index].value← op(field .name,field .value)

return p

for packet management and radio processing, such as Scapy-
Radio and GNU Radio for HackRF One SDR [59], and RFlib
for YardStick One dongle [60].

VFuzz sends amutated frame that contains anACK request
flag set to True; therefore, if the target processes the mutated
frame, it has an obligation to send back an ACK. After
receiving the ACK receipt, or not receiving it for a timeout
period, VFuzz turns to the state watchdog to analyze the bugs
or state transitions.

1782 VOLUME 10, 2022

C. K. Nkuba et al.: Riding IoT Wave With VFuzz: Discovering Security Flaws in Smart Homes

TABLE 4. Description of used oracles and corresponding bugs.

E. STATE WATCHDOG
As discussed in Subsection IV-A, it is not trivial to infer
the internal states of a Z-Wave device, which is a blackbox
residing in a network. For example, when trying to check if
the light bulb device quickly processes the switch on com-
mand and switches the light On, one might send an additional
GET packet asking the bulb to report the status of the light.
However, there are several scenarios that make such approach
undesirable: (1) the bulb does not receive the GET packet at
all, and could not report the light’s state, (2) the bulb internally
updates the light state to On, reporting back that the light
is on, but fails to physically turn the light on, (3) the bulb
physically turns the light on, but fails to update the light’s
state, reporting back that the light is off, and so forth. Thus,
we propose a state watchdog that uses TX/RX modules to
sniff the response received from the target device to monitor
its approximate internal states as well as capture and validate
its buggy states.

1) CHECKING BUGS WITH ORACLES
The goal of VFuzz is to detect bugs in Z-Wave devices,
including those described in Subsection III-C. For each class
of bugs and vulnerabilities, we define an oracle that the
state analyzer could use to check for the existence of a bug.
Table 4 lists some of the oracles used and corresponding
bugs. Figure 6 shows a sample of the pseudocode related
to the oracle that checks a specific Z-Wave Command Class
BINARY_SWITCH with Command SET. The Z-Wave spec-
ification features 117 Command Classes and corresponding
Commands with defined values. Note that in this paper,
we initially focus on the Command Classes supported by our
testbed devices, and plan to extend the oracles to include the
rest of the commands in the future.

F. FEEDBACK GENERATOR
The feedback generator stores logs of all sent packets and
received ones.

1) BUG REPORTS
Packets that cause bugs on the target device are logged sepa-
rately for further user analysis and validation.

2) INTERESTING STATE TRANSITIONS
If no potential bug is detected, VFuzz checks if the device
has made any state transition, which implies that the device is
adversely affected by the mutated packet, even though it has
not exhibited any buggy state. For example, if the response

FIGURE 6. Pseudocode of the correctness oracle checking the Binary
Switch Set Command.

time continues to increase upon receiving mutated packets, it
is reasonable to assume that further mutation on the packet
will grant VFuzz a higher chance of triggering a DoS than
sending a random packet. Based on this logic, we established
a mapping between observable state transitions and their
‘‘interesting-ness’’. If any of the interesting state transitions
are captured, the feedback generator enqueues the mutated
packet in the packet queue so that the packet mutator continue
to mutate the interesting packet and trigger a potential crash
or bug.

V. EVALUATION
We evaluated the impact of VFuzz by fuzzing various Z-Wave
smart home devices. Specifically, we showed the overall
effectiveness of VFuzz through the previously unknown vul-
nerabilities discovered (Subsection V-B), and the efficiency
of the input mutator (Subsection V-C) as well as the cyber-
physical executor (Subsection V-D) compared to the rel-
evant work. Also, we provided a proof-of-concept attack
scenarios to demonstrate the practical impact of the vul-
nerabilities found by VFuzz on a real Z-Wave smart home
(Subsection V-E).

A. EXPERIMENTAL SETUP
1) TARGET DEVICES
To assess diverse versions and implementations of the
Z-Wave protocol, we set up a Z-Wave testbed that con-
sists of both the latest S2, S0, and legacy devices from
several manufacturers. Out of all the Z-Wave chipset series
(100, 200, 300, 400, 500, and 700), we could find only devices
from series 300, 500, and 700 on the market, because of
obsolescence by defects in the 200 and 400 chipsets [61].
Figure 7 shows the devices used in this study, and Table 5
lists their specifications.

2) BASELINE FUZZERS FOR COMPARISON
To the best of our knowledge, there is no systematic fuzzing
approach targeting Z-Wave devices available, other than

VOLUME 10, 2022 1783

C. K. Nkuba et al.: Riding IoT Wave With VFuzz: Discovering Security Flaws in Smart Homes

FIGURE 7. Z-Wave devices used for experiments. Clockwise from the top
left: Schlage door lock BE468, Schlage door lock BE469ZP, Samsung
SmartThings Hub, Samsung ConnectHome, Linear Motion Sensor, Linear
smart LED bulb, Aeotec ZWA008 motion sensor, Aeotec ZW100-A motion
sensor, Fibaro wall plug, Dome siren, Aeotec siren, SiLabs UZB-7
controller, Zooz S2 USB Stick, Aeon Labs Z-Stick Gen 5, Aeotec contact
sensor, Linear contact sensor, Zooz S2 double plug with USB, Jasco
Plug-in smart switch, and Zooz power strip.

FIGURE 8. Initial seed example with added H-ID and DST .

a work close to VFuzz, i.e., EZ-Wave [7]. The authors of
EZ-Wave identified one vulnerability in one Z-Wave device
by sending crafted Z-Wave frames. However, as its algorithm
for packet generation is not known, we could only perform
a result-oriented comparison with EZ-Wave regarding the
throughput and bugs found. Also, to evaluate the effectiveness
of packet mutation, we compared FIPA to Radamsa [62] and
a random algorithm by implementing their mutation modules
in customized versions of VFuzz.

3) INITIAL SEED SETS
Unless otherwise specified, the initial seed packet is a basic
NOP packet with H-ID and DST fields properly set to those
of the testbed network and the target device respectively,
and LEN and CS set to correct length and checksum values
(see Figure 8).

4) EXPERIMENT ENVIRONMENT
We evaluated VFuzz on a desktop machine with an Intel Core
i5-6600 (3.3 GHz), 8 GB RAM, and 256 GB SSD, running
Ubuntu 18.04 as the host OS. An earlier prototype version
used HackRF One [59] as the transceiver; however owing to
the short transmission range and high cost, we opted for the
YardStick One [60] dongle. The selection of YardStick One
was based solely on its low price, small size, capabilities, and
transmission range. VFuzz ranges from 20 m indoors to 30 m
outdoors.

5) EVALUATION METRICS
Evaluating blackbox fuzzers on IoT devices is challeng-
ing because of the lack of source code and memory debug

analysis tools used in whitebox and greybox fuzzing for
assessing code coverage [30], [63]. To assess VFuzz, we sug-
gest three metrics: vulnerability discovery, mutator effi-
ciency, and executor efficiency.
• Metric 1: Vulnerability discovery.Measures the effec-
tiveness of VFuzz in finding vulnerabilities in real
Z-Wave devices. For crash triage, we manually assess
packets to remove redundancy and identify unique
exploitable vulnerabilities.

• Metric 2: Mutator efficiency. This metric measures
the efficiency of FIPA in generating semi-valid Z-Wave
packets and buggy packets, compared to other mutation
algorithms. It accesses the average ratio between packets
successfully received by the target device to the total
number of packets sent by VFuzz.

Reception Ratio =
Total Packets Received
Total Packets Sent

(2)

• Metric 3: Executor efficiency. It determines VFuzz
input generation speed or throughput per second in con-
sideration of the processing power of the target device.

Throughput =
Total Packets Generated

Time (sec)
(3)

B. VULNERABILITY DISCOVERY
First, the previously unknown vulnerabilities discovered by
VFuzz are listed. Because of fuzzing the devices listed
in Table 5, VFuzz discovered 10 critical vulnerabilities
(see Table 6), causing devices to either malfunction, crash,
or become unresponsive, or let the attacker control the
device without authentication. From these flaws, six CVEs
were assigned by the US CERT/CC (see Table 7). Below-
mentioned are certain interesting cases.

1) CONTROLLER DoS
The most critical issue found in all five Z-Wave controllers
(i.e., D1 through D5) renders them vulnerable to DoS attacks,
which make their service inaccessible. The buggy packet
frame is generated because of mutating the HDR to 0 × 01
and the CmdCL to 0 × 04 (FIND NODES IN RANGE)
with a randomly inserted payload. This CmdCL causes the
controller to search for neighbors’ devices. As the payload is
random, the controller searches for rogue devices by continu-
ously sending NOP and could not proceed with any upcoming
device events. Thus, the user could not be notified about
any of the events happening in the smart home, such as
burglary, fire alarm, water leak, and gas leak. The bug is due
to the Z-Wave specification, the lack of authentication of the
sender, and the lack of verification of the packet’s application
payload.

2) CONTROLLER CRASH
This vulnerability causes the controller to crash and requires a
power reset. This occured when VFuzz mutated the Z-Wave
frame control field with a valid value of the route property
set to True and invalid HDR, CmdCL, CMD, and PARAM.

1784 VOLUME 10, 2022

C. K. Nkuba et al.: Riding IoT Wave With VFuzz: Discovering Security Flaws in Smart Homes

TABLE 5. Detailed specifications of the tested Z-Wave devices regarding the type, vendor, model number, chipset, firmware, supported encapsulation
mode, supported encryption mode, and the power source. We will refer to each device as the identifier specified in the ID column herein.

TABLE 6. Summary of the new vulnerabilities detected by VFuzz, devices
affected by each vulnerability, and the average time required to trigger
the vulnerability across five runs of fuzz testing.

These malicious frames corrupt the controller routing table.
Moreover, it was identified by the state watchdog due to
increase in target device response. It flags a crash when a
target device cannot communicate for more than 1 min.

The Z-Wave routing protocol implements a maximum
of four repeaters (four hops) to reach distant smart home
devices. The above-mentioned vulnerability could affect the
smart home responsiveness. Because an attacker could inject
false routing hops information into a vulnerable controller’s
routing table, which could result in a delay in command
processing time.

3) DEVICE CRASH
Devices D15, D16, and D17 crashed when VFuzz sent
mutated packets with CmdCL 0 × 98 0 × 40 (SECURITY
NONCE GET), 0 × 9F 0 × 01(SECURITY 2 NONCE
GET), 0 × 00 (NO OPERATION or NOP), and 0 × 01
0 × 02 (NIF REQUEST). These packets were flagged as

‘‘interesting’’ by the state watchdog because they caused
the target device transmission delay and led to uncontrolled
resource consumption vulnerabilities.

4) DOOR LOCK DoS 1
Despite the S0 security features of door lock D7, it accepts
non-authenticated external packets from VFuzz. The DoS
was reached while sending a mutated packet to the controller
with an invalid NIF of device D7, which falsely reports the
non-support of S0 encryption. After validating and updating
the malicious NIF in its routing table, the controller no
longer control the door lock. To recover from this attack,
a factory reset of the door lock and manual network inclusion
is required.

5) DOOR LOCK DoS 2
The DoS was reached while fuzzing the target device D7
with CmdCL 0 × 00 (NOP), 0 × 01 0 × 02 (NIF
REQUEST) , and 0 × 98 0 × 40 (SECURITY NONCE
GET) packets. These packets request the target to respond
with its ACK, NIF REPORT,and NONCE REPORT values
for network communication.While fuzzing with these above-
listed crafted frames, the device respond indefinitely, result-
ing in high battery consumption. The door lock automatically
unlocks when it reaches low battery level. This bug is caused
by the lack of implementation of response rate limiting and
sender authentication.

6) DEVICE REMOTE CONTROL
As legacy CRC-16 devices do not implement encryption, a
remote control attack could be launched by repetitively send-
ing a frame that deactivates the devices for a period; thereby,

VOLUME 10, 2022 1785

C. K. Nkuba et al.: Riding IoT Wave With VFuzz: Discovering Security Flaws in Smart Homes

denying the user requests for activation. VFuzz generates the
corresponding frame from the data retrieved from the NIF
report of the target device. For instance, sending a packet with
aCmdCL 0×20 0×01 0×00 (BASIC SET OFF), 0×25
0× 01 0× 00 (SWITCH BINARY SET OFF) or 0× 26
0 × 01 0 × 00 (SWITCH MULTILEVEL SET OFF) to
the CRC-16 devices, namely, D14, D18, and D19, turn them
off. The devices would not be accessible during the attack,
despite the home user attempting to turn them on.

7) ADDITIONAL VULNERABILITIES
Most devices do not verify the authenticity of the data sent by
VFuzz. As a result, fake events could be injected into the con-
troller, which could lead to the actuation of predefined scenes.
Several devices send back packets without encryption, which
could be captured, tampered, and replayed. All devices accept
packets from invalid and non-specified frame values; which
is a violation of the Z-Wave protocol specification.

8) NEW CVE ON Z-WAVE CHIPSET
After collecting the buggy packets that made the target
devices either unresponsive or crash, we cross-checked all
devices to see if the same packet adversely affected multi-
ple devices. During the process, we discovered that certain
vulnerabilities affect multiple devices that share the same
Z-Wave chipset series. Such vulnerabilities were due to the
issues in the chipsets rather than the individual devices, which
potentially imply higher security impacts. For those, CVE
numbers were issued, and Table 7 summarizes the new CVEs
found per Z-Wave chipset series along with the matching
CWEs [64] and affected devices.

C. MUTATOR EFFICIENCY
We compared the efficiency of FIPA in generating valid
Z-Wave packets to Radamsa, and Random mutators. Here,
we used customized VFuzz to generate packets with FIPA,
Radamsa, and random functions. Radamsa and Random
mutation failed to generate a meaningful number of semi-
valid Z-Wave packets as they are agnostic to the syntax
and semantics of the Z-Wave protocol. This justifies our
challenges listed in Section IV, because IP-based protocol
mutators could not be directly applied to IoT-based protocols,
which have different constraints such as the dependency of a
CmdCL, CMD, and PARAM. Figure 9 illustrates the average
packet reception ratio of the target device for 10,000 packets
generated by each method per test mode. In test Mode 2,
we considered the above-mentioned constraints by automat-
ically adding valid LEN and CS values, and restricting the
mutation of invalid application payload with LEN greater
than 64 bytes. With these constraints, Radamsa and Random
mutations performed better.

D. EXECUTOR EFFICIENCY
VFuzz has a higher throughput than EZ-Wave; VFuzz pro-
vides an average throughput of 54 with respect to the process-
ing power of the target device, while EZ-Wave offers one test

FIGURE 9. Average packet reception ratio (obtained in 5 runs) from
Radamsa, Random, and FIPA mutation. Mode 1: mutation of whole
Z-Wave initial seed packet. Mode 2: restricted mutation of the packet
application payload only plus generation of valid LEN and CS.

case per second (see Figure 10). One of the reasons is that
VFuzz only needs to send two packets per test case, while
EZ-Wave sends four packets. Moreover, VFuzz is efficient
in finding new vulnerabilities owing to its low implementa-
tion complexity and diverse devices included in the testbed.
Table 8 compares VFuzz and EZ-Wave.

FIGURE 10. Comparison of the average throughput of EZ-Wave and
VFuzz.

E. PROOF-OF-CONCEPT ATTACK SCENARIOS
With the knowledge of the discovered vulnerabilities during
fuzz testing, we extended the VFuzz framework to include a
proof-of-concept exploit mode (run as VFuzz -e) to attack
a miniature Z-Wave smart home that resembles an actual
smart home environment. This smart home runs a Z-Wave
network that consists of the devices listed in Figure 7, namely
a Z-Wave controller, door lock, windows contact sensor,
smart LED, smart switch, and siren. For mobility and porta-
bility, VFuzz runs on a Raspberry Pi 4 separately from our
Z-Wave testbed and injects Z-Wave packets directly to the
targeted Z-Wave controller and slave devices. We provided a
video of the attack in [28].

The attacker is located outside the smart home network and
uses dongles connected to a Raspberry Pi 4 to sniff and record
all the traffic of the Z-Wave smart home network. After cap-
turing the packets, the attacker analyzes them and retrieves
the H-ID and SRC of the targeted devices. After information
retrieval, VFuzz generates new packets and injects them into
the network. The attacker could wait until the house owner
leaves, then inject commands to the Z-Wave network causing
devices to either grant them access to the home, disable
alarms, turn on high-power devices that consume energy,
cause devices to malfunction, or cause DoS on the controller.
The worst case would be to send repetitive commands that
misuse, drain, and damage devices.

We performed a successful DoS attack on the controller
that allows intruders to have physical access to the smart

1786 VOLUME 10, 2022

C. K. Nkuba et al.: Riding IoT Wave With VFuzz: Discovering Security Flaws in Smart Homes

TABLE 7. CVE IDs and vulnerabilities discovered per Z-Wave chipset.

TABLE 8. Point-by-point comparison of VFuzz to EZ-Wave, a closely
related testing approach targeting Z-Wave.

home by disabling notifications from the contact sensor
attached to the windows that detects a breach. Also, we per-
formed a successful replay attack on the devices and success-
fully impersonated all devices by sending fake event packets
to either the controller or other devices. As the controller
does not check for the integrity of the sender, it accepts all
the replayed packets and updates the device status to the
user’s mobile app via the cloud; thereby, providing incorrect
information.

VI. DISCUSSION AND COUNTERMEASURES
In this section, we discuss the impact and limitations of
VFuzz. In addition, we propose countermeasures.

A. SIMPLICITY
The direct interaction between VFuzz and the Z-Wave
devices enables the fuzzer to achieve fast response and high
efficiency, as VFuzz does not rely on a smartphone app of
the devices or a cloud relay as compared to other IoT fuzzers
that work on the controller IP interface or rely on middleware
such as a mobile app [33].

B. RESEARCH SIGNIFICANCE
With more than 100 million devices on the market, the
Z-Wave ecosystem faces several security challenges as illus-
trated in our research results in Section V. Various Z-Wave
legacy CS-8 and CRC-16 devices are vulnerable to replay,
injection, and DoS attacks because these devices do not
implement encrypted communication and lack a replay

protection mechanism. Moreover, certain legacy Z-Wave
device chipsets are one-time-programmable and cannot be
updated, e.g., with a firmware update as with more recent
S2 Z-Wave devices, to mitigate these attacks. Currently,
only 27% of products implement S2 security that guarantees
confidentiality, integrity, and authentication between Z-Wave
devices [18]. However, S2 security needs to support specific
unencrypted commands due to backward compatibility; con-
sequently, VFuzz succeeded in injecting malicious packets
causing a DoS.

C. LIMITATION ON S0 AND S2 DEVICES
Despite its benefits, VFuzz faces limitations that necessitate
future enhancements. VFuzz has a high accuracy for unen-
crypted CRC-16 devices. For the S0 and S2 devices, we can
only fuzz limited Z-Wave packets owing to the encryption
requirement. There is a need to explore the possibility of fully
fuzz encrypted S0 and S2 devices by retrieving the encryption
key of a target Z-Wave network.

D. RECOMMENDATIONS
We recommend that Z-Wave device manufacturers imple-
ment S2 security by default on all new devices with a fix
to downgrade attacks during device network inclusion [54].
In addition, a proper Z-Wave specification on S2 devices can
eliminate the flooding attack by authenticating the sender and
limiting the amount of received packets per device and per
time frame. Moreover, if well patched, a Z-Wave firmware
update can restrict malicious packets from being processed by
S2 devices. For the legacy CRC-16 Z-Wave devices targeted
in this paper, we suggest the development of an intrusion
detection and prevention system either on the Z-Wave con-
troller or a separate device to detect external attacks and alert
the user for an immediate response. We advise smart home
users to combine sensors using different technologies such as
e.g., Z-Wave and ZigBee, so that when the former is attacked,
the latter could inform the user of an intrusion.

E. RESPONSIBLE DISCLOSURE
We filed several vulnerability reports to the US CERT/CC
division [27] in order to work with the respective chipset and
device manufacturers to fix and mitigate the threats that we
discovered.

VOLUME 10, 2022 1787

C. K. Nkuba et al.: Riding IoT Wave With VFuzz: Discovering Security Flaws in Smart Homes

F. AVAILABILITY AND ETHICAL CONSIDERATIONS
The VFuzz public version provides core Z-Wave fuzzing
functionalities to researchers while reducing advanced fea-
tures that could be misused by bad actors to attack smart
home devices. For the same ethical considerations, we are not
releasing the VFuzz PoC exploit code.

The VFuzz public source code will be available for down-
load at https://github.com/CNK2100/VFuzz-public.

VII. CONCLUSION AND FUTURE WORK
In this paper, we presented VFuzz, a Z-Wave fuzzing frame-
work that checks for known and unknown vulnerabilities
in Z-Wave smart home devices. Using the semantic-aware
Field Prioritization Algorithm for mutation and feedback
mechanism assisted by a robust state watchdog, VFuzz tested
actual Z-Wave devices that have already been deployed to
the market and found six new security CVEs (see Table 7)
on Z-Wave chipsets including (1) critical vulnerabilities in
Z-Wave legacy CRC-16 devices, and (2) specific attack vec-
tors in secured S0 and S2 devices owing to backward com-
patibility and protocol specification requirements.

We suggest vendors to actively participate in patching
the firmware and roll out updates to the affected devices to
protect users from critical security issues. For future work, we
are developing an intrusion detection and prevention system
for Z-Wave legacy non-secure devices.

REFERENCES
[1] International Data Corporation. Worldwide Internet of Things

Forecast, 2020–2024. Accessed: Dec. 14, 2021. [Online]. Available:
https://www.idc.com/getdoc.jsp?containerId=US45861420

[2] Sigma Designs. Sigma Designs Ships 100 Millionth Z-Wave
Chipset Module. Accessed: Dec. 14, 2021. [Online]. Available:
https://www.globenewswire.com/news-release/2018/04/12/1469417/0/en/
Sigm a-Designs-Ships-100-Millionth-Z-Wave-Chipset-Module.html

[3] Silicon Laboratories. Smart Home Control on One App. Accessed: Dec.
14, 2021. [Online]. Available: https://www.z-wave.com/

[4] Z-Wave Alliance. The Smart Home is Powered by Z-Wave. Accessed: Dec.
14, 2021. [Online]. Available: https://z-wavealliance.org.

[5] B. Fouladi and S. Ghanoun, ‘‘Security evaluation of the Z-wave wireless
protocol,’’ BlackHat USA, vol. 24, pp. 1–2, Jan. 2013.

[6] C. Badenhop, J. Fuller, J. Hall, B. Ramsey, and M. Rice, ‘‘Evaluating ITU-
T G.9959 based wireless systems used in critical infrastructure assets,’’ in
Proc. 9th Int. Conf. Crit. Infrastruct. Protection (ICCIP), in Critical Infras-
tructure Protection IX, vol. 466,M. Rice and S. Shenoi, Eds. Arlington, VA,
USA, Mar. 2015, pp. 209–227. [Online]. Available: https://hal.inria.fr/hal-
01431003, doi: 10.1007/978-3-319-26567-4_13.

[7] J. Hall, B. Ramsey, M. Rice, and T. Lacey, ‘‘Z-wave network reconnais-
sance and transceiver fingerprinting using software-defined radios,’’ in
Proc. Int. Conf. Cyber Warfare Secur., 2016, p. 163.

[8] J. D. Fuller and B. W. Ramsey, ‘‘Rogue Z-wave controllers: A per-
sistent attack channel,’’ in Proc. IEEE 40th Local Comput. Netw.
Conf. Workshops (LCN Workshops), Oct. 2015, pp. 734–741, doi:
10.1109/LCNW.2015.7365922.

[9] L. Rouch, J. François, F. Beck, and A. Lahmadi, ‘‘A universal controller to
take over a Z-wave network,’’ in Proc. Black Hat Eur., 2017, pp. 1–9.

[10] C. Badenhop and B. Ramsey, ‘‘Carols of the Z-wave security layer; or,
robbing keys from Peter to unlock Paul,’’ PoC or GTFO, vol. 12, pp. 6–12,
Mar. 2016.

[11] C. W. Badenhop, S. R. Graham, B. W. Ramsey, B. E. Mullins,
and L. O. Mailloux, ‘‘The Z-wave routing protocol and its security
implications,’’ Comput. Secur., vol. 68, pp. 112–129, Jul. 2017, doi:
10.1016/j.cose.2017.04.004.

[12] J. Hall and B. Ramsey, ‘‘Breaking bulbs briskly by bogus broadcasts,’’
ShmooCon, Washington, DC, USA, 2016.

[13] J. D. Fuller, B. W. Ramsey, M. J. Rice, and J. M. Pecarina, ‘‘Misuse-based
detection of Z-wave network attacks,’’ Comput. Secur., vol. 64, pp. 44–58,
Jan. 2017, doi: 10.1016/j.cose.2016.10.003.

[14] K. Kim, K. Cho, J. Lim, Y. H. Jung, M. S. Sung, S. B. Kim, and
H. K. Kim, ‘‘What’s your protocol: Vulnerabilities and security threats
related to Z-wave protocol,’’ Pervasive Mobile Comput., vol. 66, Jul. 2020,
Art. no. 101211.

[15] N. Boucif, F. Golchert, A. Siemer, P. Felke, and F. Gosewehr, ‘‘Crushing
the wave - new Z-wave vulnerabilities exposed,’’ 2020, arXiv:2001.08497.

[16] C. W. Badenhop, B. W. Ramsey, B. E. Mullins, and L. O. Mailloux,
‘‘Extraction and analysis of non-volatile memory of the ZW0301 module,
a Z-wave transceiver,’’ Digit. Invest., vol. 17, pp. 14–27, Jun. 2016, doi:
10.1016/j.diin.2016.02.002.

[17] C. Badenhop, S. R. Graham, B. E. Mullins, and L. O. Mailloux, ‘‘Looking
under the Hood of Z-wave: Volatile memory introspection for the ZW0301
transceiver,’’ ACM Trans. Cyber-Phys. Syst., vol. 3, no. 2, p. 20, 2018.
[Online]. Available: https://doi.org/10.1145/3285030.

[18] Z-Wave Alliance. Z-Wave Products. Accessed: Dec. 28, 2021. [Online].
Available: https://products.z-wavealliance.org/search/DoAdvanced
Search?productName=&productIdentifier=&productDescription=&
category=-1&brand=-1®ionId=-1&supportsS2=on&order=

[19] MITRE. CVE-2018-19982. Accessed: Dec. 14, 2021. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2018-19982

[20] CVE-2018-19983. Accessed: Dec. 14, 2021. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2018-19983

[21] M.Antonakakis, T. April,M. Bailey, andM. Bernhard, ‘‘Understanding the
mirai botnet,’’ in Proc. 26th USENIX Secur. Symp., 2017, pp. 1093–1110.

[22] G. Kambourakis, C. Kolias, and A. Stavrou, ‘‘The mirai botnet and the
IoT zombie armies,’’ in Proc. MILCOM - IEEE Mil. Commun. Conf.
(MILCOM), Oct. 2017, pp. 267–272.

[23] Y. Dvorkin and S. Garg, ‘‘IoT-enabled distributed cyber-attacks on trans-
mission and distribution grids,’’ inProc. North Amer. Power Symp. (NAPS),
Sep. 2017, pp. 1–6.

[24] K. Sonar and H. Upadhyay, ‘‘A survey: DDOS attack on Internet of
Things,’’ Int. J. Eng. Res. Develop., vol. 10, no. 11, pp. 58–63, 2014.

[25] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher, Internet Denial of
Service: Attack and Defense Mechanisms (Radia Perlman Computer Net-
working and Security). Upper Saddle River, NJ, USA: Prentice-Hall, 2004.

[26] M. Zalewski. American Fuzzy Lop. Accessed: Dec. 14, 2021. [Online].
Available: https://lcamtuf.coredump.cx/afl/

[27] Software Engineering Institute. The CERT Division. Accessed:
Dec. 14, 2021. [Online]. Available: https://www.sei.cmu.edu/about/
divisions/cert/index.cfm

[28] C. K. Nkuba.Proof-of-Concept Attack Scenarios. Accessed: Dec. 14, 2021.
[Online]. Available: https://youtu.be/RdVWxwg3FIE

[29] B. P. Miller, L. Fredriksen, and B. So, ‘‘An empirical study of the reliability
of UNIX utilities,’’ Commun. ACM, vol. 33, no. 12, pp. 32–44, Dec. 1990.

[30] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
‘‘What you corrupt is not what you crash: Challenges in fuzzing embedded
devices,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2018, pp. 1–15.

[31] J. Wright. River Loop Security: Killerbee. Accessed: Dec. 14, 2021.
[Online]. Available: https://github.com/riverloopsec/killerbee

[32] C. Bernardini, A. Lahmadi, and O. Festor, ‘‘Development of a fuzzing tool
for the 6LoWPAN protocol,’’ INRIA, Villers-Lès-Nancy, France, Tech.
Rep. RR-7817, Nov. 2011. [Online]. Available: https://hal.inria.fr/hal-
00645948/document

[33] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, ‘‘IoTFuzzer: Discovering memory corruptions in
IoT through app-based fuzzing,’’ in Proc. Netw. Distrib. Syst. Secur. Symp.,
San Diego, CA, USA, 2018, pp. 1–15.

[34] Beyond Security. beSTORM Black Box Testing. Accessed: Dec. 14,
2021. [Online]. Available: https://www.beyondsecurity.com/solutions/
bestorm.html

[35] Synopsys. Fuzzing Test Suites. Accessed: Dec. 14, 2021. [Online].
Available: https://www.synopsys.com/software-integrity/security-testing/
fuzz-testi ng/defensics.industry.iot.html

[36] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, ‘‘Constrained application
protocol (CoAP), draft-ietf-core-COAP-13,’’ Internet Eng. Task Force–
IETF, Orlando,FL, USA, Tech. Rep. 13, 2012.

[37] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, ‘‘MQTT-S—A pub-
lish/subscribe protocol for wireless sensor networks,’’ in Proc. 3rd
Int. Conf. Commun. Syst. Softw. Middleware Workshops (COMSWARE),
Jan. 2008, pp. 791–798.

[38] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, ‘‘FIRM-AFL:
High-throughput greybox fuzzing of IoT firmware via augmented process
emulation,’’ in Proc. 28th USENIX Secur. Symp. (USENIX Secur.), 2019,
pp. 1099–1114.

1788 VOLUME 10, 2022

http://dx.doi.org/10.1007/978-3-319-26567-4_13
http://dx.doi.org/10.1109/LCNW.2015.7365922
http://dx.doi.org/10.1016/j.cose.2017.04.004
http://dx.doi.org/10.1016/j.cose.2016.10.003
http://dx.doi.org/10.1016/j.diin.2016.02.002

C. K. Nkuba et al.: Riding IoT Wave With VFuzz: Discovering Security Flaws in Smart Homes

[39] D. D. Chen, M. Egele, M. Woo, and D. Brumley, ‘‘Towards automated
dynamic analysis for linux-based embedded firmware,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., 2016, pp. 1–16.

[40] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, ‘‘AVATAR: A
framework to support dynamic security analysis of embedded systems’
firmwares,’’ in Proc. NDSS, 2014, pp. 1–16.

[41] J.-M. Picod, A. Lebrun, and J.-C. Demay, ‘‘Bringing software defined radio
to the penetration testing community,’’ inProc. BlackHat USAConf., 2014,
pp. 1–16.

[42] J. Hall, B. Ramsey, M. Rice, and T. Lacey. EZ-Wave. [Online]. Available:
https://github.com/cureHsu/EZ-Wave

[43] J. L. Hall, ‘‘A practical wireless exploitation framework for
Z-wave networks,’’ Air Force Inst. Technol., Wright-Patterson,
OH, USA, Tech. Rep. AD1054454, 2016. [Online]. Available:
https://apps.dtic.mil/sti/citations/AD1054454

[44] Silicon Laboratories. Z-Wave Global Regions. Accessed: Dec. 14,
2021. [Online]. Available: https://www.silabs.com/wireless/z-wave/
technology/global-regions.

[45] Z-Wave Device Class Specification. Accessed: Dec. 14, 2021. [Online].
Available: https://www.silabs.com/documents/login/miscellaneous/
SDS11847-Z-Wave-Pl us-Device-Type-Specification.pdf

[46] M. Klein. What is Z-Wave Long Range and How Does it Differ
from Z-Wave?. Accessed: Dec. 14, 2021. [Online]. Available: https://
z-wavealliance.org/what-is-z-wave-long-range-and-how-does-it-differ-
from-z-wave/

[47] International Telecommunication Union. Short Range Narrow-
Band Digital Radiocommunication Transceivers-PHY and MAC
Layer Specifications. Accessed: Dec. 14, 2021. [Online]. Available:
https://www.itu.int/rec/T-REC-G.9959

[48] C. Paetz, Z-Wave Essentials. Scotts Valley, CA, USA: CreateSpace Inde-
pendent Publishing Platform, 2018.

[49] Silicon Laboratories. Z-Wave Specification. Accessed: Dec. 14, 2021.
[Online]. Available: https://www.silabs.com/products/wireless/mesh-
networking/z-wave/specification

[50] Z-Wave Alliance. Z-Wave Transport-Encapsulation Command
Class Specification. Accessed: Dec. 14, 2021. [Online]. Available:
https://www.silabs.com/documents/login/miscellaneous/SDS13783-Z-
Wave-Tr ansport-Encapsulation-Command-Class-Specification.pdf

[51] Pub, NIST FIPS, ‘‘Announcing the advanced encryption standard (AES),’’
Federal Inf. Process. Standards Publication, vol. 197, pp. 1–51, 2001.

[52] R. Housley, Using AES-CCM and AES-GCM Authenticated Encryption
in the Cryptographic Message Syntax (CMS), document RFC 5084,
Nov. 2007.

[53] D. J. Bernstein, ‘‘Curve25519: New Diffie-Hellman speed records,’’ in
Public Key Cryptography—PKC 2006, M. Yung, Y. Dodis, A. Kiayias,
and T. Malkin, Eds. Berlin, Germany: Springer, 2006, pp. 207–228, doi:
10.1007/11745853_14.

[54] Pen Test Partners. Z-Shave.Exploiting Z-Wave Downgrade
Attacks. Accessed: Dec. 14, 2021. [Online]. Available:
https://www.pentestpartners.com/security-blog/z-shave-exploiting-z-
wave-downgrade-attacks

[55] C. Fu, Q. Zeng, and X. Du, ‘‘Hawatcher: Semantics-aware anomaly detec-
tion for appified smart Homes,’’ in Proc. 30th USENIX Secur. Symp.
(USENIX Secur.), 2021, pp. 1–18.

[56] A. Makhshari and A. Mesbah, ‘‘IoT bugs and development challenges,’’
in Proc. IEEE/ACM 43rd Int. Conf. Softw. Eng. (ICSE), May 2021,
pp. 460–472.

[57] Z-Wave Alliance. Z-Wave Alliance Announces New Security Require-
ments for All Z-Wave Certified IoT Devices. Accessed: Dec. 14,
2021. [Online]. Available: https://z-wavealliance.org/z-wave-alliance-
announces-new-security-requirements-z-wave-certified-iot-devices

[58] K. Serebryany, ‘‘Continuous fuzzing with libFuzzer and AddressSani-
tizer,’’ in Proc. IEEE Cybersecurity Develop. (SecDev), Nov. 2016, p. 157.

[59] M. Ossmann. HackRF One. Accessed: Dec. 14, 2021. [Online]. Available:
https://greatscottgadgets.com/hackrf/one/

[60] Great Scott Gadgets. YARD Stick One-a Sub-1 GHzWireless Test Tool Con-
trolled by Your Computer. Accessed: Dec. 14, 2021. [Online]. Available:
https://greatscottgadgets.com/yardstickone

[61] E. Ryherd. What is the Difference Between Z-Wave and
Z-Wave Plus? Accessed: Dec. 14, 2021. [Online]. Available:
https://drzwave.blog/2018/06/13/whats-the-difference-between-z-wave-
and-z-wave-plus/

[62] A. Helin. Radamsa: A General Purpose Fuzzer. Accessed: Dec. 14, 2021.
[Online]. Available: https://gitlab.com/akihe/radamsa

[63] Wikipedia. Fuzzing. Accessed: Dec. 14, 2021. [Online]. Available:
https://en.wikipedia.org/wiki/Fuzzing

[64] MITRE. CWE Vulnerability Enumeration: A Community-Developed List
of Common Software Security Weaknesses. Accessed: Dec. 14, 2021.
[Online]. Available: https://cwe.mitre.org/

CARLOS KAYEMBE NKUBA received the B.S.
degree in computer science from the Protestant
University of Lubumbashi, Lubumbashi, Demo-
cratic Republic of the Congo (DRC), in 2010, and
the B.S. degree in information technology (major)
and global management (minor) and the M.S.
degree in computer science information technol-
ogy from Handong Global University (HGU),
Pohang, South Korea, in 2014 and 2016, respec-
tively. He is currently pursuing the Ph.D. degree

with the Computer Science and Engineering Department, Korea Univer-
sity. Prior to joining HGU, he worked as a IT Network Administrator at
Gecamines Mining, DRC. His research interests include computer software
and network security, fuzzing, and the IoT automated vulnerability discovery.

SEULBAE KIM received the B.S. and M.S.
degrees in computer science and engineering from
Korea University, in 2016 and 2018, respectively.
He is currently pursuing the Ph.D. degree with
the School of Computer Science, Georgia Insti-
tute of Technology. His research interests include
computer systems security, automated vulnerabil-
ity detection, and cyber-physical systems security.

SVEN DIETRICH (Senior Member, IEEE) is
currently a Professor with the Computer Sci-
ence Department, City University of New
York (CUNY) Hunter College and the Gradu-
ate Center. Prior to joining CUNY Hunter Col-
lege, he was with the Mathematics and Computer
Science Department, CUNY John Jay College
of Criminal Justice, as an Associate Professor,
from 2014 to 2020. He was as an Assistant Pro-
fessor with the Computer Science Department,

Stevens Institute of Technology, from 2007 to 2014. Hewas a SeniorMember
of the Technical Staff at CERT and CyLab, Carnegie Mellon University,
from 2001 to 2007. His research interests include computer and network
security, cryptography, anonymity, and privacy.

HEEJO LEE received the B.S., M.S., and Ph.D.
degrees in computer science and engineering from
the POSTECH, South Korea. From 2000 to 2001,
he was a Postdoctoral Researcher with the Depart-
ment of Computer Sciences and CERIAS, Purdue
University. He is currently a Professor with the
Department of Computer Science and Engineer-
ing, Korea University, Seoul, South Korea. Before
joining Korea University, he was at AhnLab, Inc.,
as a CTO, from 2001 to 2003. He serves as an

Editor for the IEEE TRANSACTIONS ONVEHICULAR TECHNOLOGY and the Journal
of Communications and Networks.

VOLUME 10, 2022 1789

http://dx.doi.org/10.1007/11745853_14

